MATLAB中如何设置图片大小?

在学术论文或学术报告中,往往有大量的图片,如何编辑这些图片是一件不小的任务。编辑图片一方面是因为杂志社或论文本身对图片大小有要求,另一方面也是为了文章的美观。我见过很多同学在用MATLAB画完图后直接截图,这样很不好。因为截的图不是矢量图,若大小不合适,在拉伸或缩放的过程中会对图形造成损害,分辨率被破坏。其实在MATLAB中有COPY图片的功能,即在工具栏中“Edit”中的“Copy Figure”选项,然后直接粘贴到论文中即可。

但是这样的图片在缩放的时候文字大小不变,同样会造成图形的破坏。那么如何解决这个问题呢?只有在画图前将图片的大小、图形在图片中的比例、文字的大小调整好,然后直接复制到论文中,什么也不需要动。既简单又实用。

一般而言,只需对目标图像进行图形句柄对象和坐标轴句柄对象进行操作即可。MATLAB中分别用gcf和gca表示。如:

set(gcf,’unit’,’centimeters’,’position’,[10 5 7 5]);

这就是对图形的位置及大小进行设置。单位为厘米,大小为7cm×5cm,图形起点坐标为(10cm,5cm)表示左下点离显示器左侧边界10cm,离下侧边界5cm。

将图形大小设置好之后,就需要设置实际的图在figure中的比例,这就需要对图形的坐标进行设置。

set(gca,'Position',[.2 .2 .7 .65]);

位置[.2 .2 .7 .65]表示所画的图形在figure中所占的比例,前两个值表示位置,后两个值表示大小。

下面给出一个例子说明:

t = 0:0.01:2;

x = sin(2*pi*t);

plot(t,x,'k','linewidth',2)   

set(gcf,'unit','centimeters','position',[3 5 7 5])

set(gca,'Position',[.15 .15 .8 .75]);

set(get(gca,'XLabel'),'FontSize',8);

注:(1)plot命令中,‘linewidth’表示线宽。

(2)最后一条命令设置坐标轴x轴数字的大小,本例未给出。

原文地址:http://blog.sina.com.cn/s/blog_97e6550e010154ef.html

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值