Bezier曲线的绘制

原文地址:http://blog.csdn.net/mylovestart/article/details/8434310

Bezier曲线是参数多项式曲线,它由一组控制多边形折线(控制多边形)的顶点唯一定义,在控制多边形的各顶点中,只有第一个和最后一个顶点在曲线上,其他的顶点则用以定义曲线的导数,阶次和形状

Bezier曲线的数学基础是能够在第一个和最后一个顶点之间进行插值的一个多项式混合函数,对于有n+1个控制点的Bezier曲线段用参数方程表示如下:


式中pk(xk,yk,zk),k=0,1,2…..n是控制多边形的n+1个顶点,BENk,n(t)是Bernstein基函数


下面输入n个点并绘制Bezier曲线

  1. #include<stdio.h> 
  2. #include<string.h> 
  3. #include<conio.h> 
  4. #include<windows.h> 
  5. #include<graphics.h>  
  6. #include<math.h> 
  7. #define N 1000 
  8. int n;//控制点的个数 
  9. struct point  //控制点的坐标 
  10.     double x; 
  11.     double y; 
  12. }point[N]; 
  13. void init()  //输入控制点的坐标 
  14.     int i; 
  15.     printf("please input the number of the points: "); 
  16.     scanf("%d",&n); 
  17.     printf("please input the location of the points\n"); 
  18.     for(i=0;i<n;i++) 
  19.     scanf("%lf %lf",&point[i].x,&point[i].y); 
  20. void sol1()  //绘制控制多边形的轮廓 
  21.     int i; 
  22.     setcolor(RED); 
  23.     for(i=0;i<n-1;i++) 
  24.     line((int)point[i].x,(int)point[i].y,(int)point[i+1].x,(int)point[i+1].y); 
  25. double sol2(int nn,int k)  //计算多项式的系数C(nn,k) 
  26.     int i; 
  27.     double sum=1; 
  28.     for(i=1;i<=nn;i++) 
  29.     sum*=i; 
  30.     for(i=1;i<=k;i++) 
  31.     sum/=i; 
  32.     for(i=1;i<=nn-k;i++) 
  33.     sum/=i; 
  34.     return sum; 
  35. void sol3(double t)  //计算Bezier曲线上点的坐标 
  36.     double x=0,y=0,Ber; 
  37.     int k; 
  38.     for(k=0;k<n;k++) 
  39.     { 
  40.         Ber=sol2(n-1,k)*pow(t,k)*pow(1-t,n-1-k); 
  41.         x+=point[k].x*Ber; 
  42.         y+=point[k].y*Ber; 
  43.     } 
  44.     putpixel((int)x,(int)y,GREEN); 
  45. void sol4()  //根据控制点,求曲线上的m个点 
  46.     int m=500,i; 
  47.     for(i=0;i<=m;i++) 
  48.     sol3((double)i/(double)m); 
  49. int main() 
  50.     init(); 
  51.     initgraph(640, 480);  
  52.     sol1(); 
  53.     sol4(); 
  54.     getch(); 
  55.     closegraph(); 
  56.     return 0; 
#include<stdio.h>
#include<string.h>
#include<conio.h>
#include<windows.h>
#include<graphics.h> 
#include<math.h>
#define N 1000
int n;//控制点的个数
struct point  //控制点的坐标
{
	double x;
	double y;
}point[N];
void init()  //输入控制点的坐标
{
	int i;
    printf("please input the number of the points: ");
	scanf("%d",&n);
	printf("please input the location of the points\n");
	for(i=0;i<n;i++)
	scanf("%lf %lf",&point[i].x,&point[i].y);
}
void sol1()  //绘制控制多边形的轮廓
{
    int i;
	setcolor(RED);
	for(i=0;i<n-1;i++)
	line((int)point[i].x,(int)point[i].y,(int)point[i+1].x,(int)point[i+1].y);
}
double sol2(int nn,int k)  //计算多项式的系数C(nn,k)
{
	int i;
	double sum=1;
    for(i=1;i<=nn;i++)
	sum*=i;
	for(i=1;i<=k;i++)
	sum/=i;
	for(i=1;i<=nn-k;i++)
	sum/=i;
	return sum;
}
void sol3(double t)  //计算Bezier曲线上点的坐标
{
    double x=0,y=0,Ber;
	int k;
	for(k=0;k<n;k++)
	{
		Ber=sol2(n-1,k)*pow(t,k)*pow(1-t,n-1-k);
		x+=point[k].x*Ber;
		y+=point[k].y*Ber;
	}
	putpixel((int)x,(int)y,GREEN);
}
void sol4()  //根据控制点,求曲线上的m个点
{
	int m=500,i;
	for(i=0;i<=m;i++)
	sol3((double)i/(double)m);
}
int main()
{
    init();
	initgraph(640, 480); 
	sol1();
    sol4();
	getch();
	closegraph();
	return 0;
}

给出一组测试用例


(红色为控制多边形,绿色为Bezier曲线)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值