人工神经网络优化算法,进化算法优化神经网络

bp神经网络的算法改进一共有多少种啊!麻烦举例一下!

改进点主要在以下几个方面1激励函数的坡度———————误差曲面的平台和不收敛现象————————————————激励函数中引入陡度因子,分段函数做激励函数2误差曲面——————误差平方做目标函数,逼近速度慢,过拟合————————————————标准误差函数中加入惩罚项————————————————信息距离和泛化能力之间的关系,构建新的神经网络学习函数3网络初始权值的选取—————————通常在【0,1】间选取,易陷入局部最小—————————————————复合算法优化初始权值—————————————————Cauchy不等式和线性代数方法得最优初始权值4改进优化算法————————标准BP采用梯度下降法,局部最小收敛慢——————————————————共扼梯度法、Newton法、Gauss一Ncwton法、Lvenber_Marquardt法、快速传播算法——————————————————前馈网络学习算法,二阶学习算法,三项BP算法,最优学习参数的BP算法。

5.优化网络结构————————拓扑结构中网络层数、各层节点数、节点连接方式的不确定性——————————————构造法和剪枝法(权衰减法、灵敏度计算方法等)——————————————网络结构随样本空间进行变换,简化网络结构6混合智能算法————————与遗传算法、进化计算、人工免疫算法、蚁群算法、微粒群算法、————————模糊数学、小波理论、混沌理论。

细胞神经网络。

谷歌人工智能写作项目:小发猫

采用什么手段使神经网络预测更加准确

优化神经网络结构AI爱发猫。如BP神经网络改变隐层神经元数量、训练算法等;使用其他神经网络。如Elman神经网络考虑了前一时刻的输出,比较适合用于预测,预测效果往往更好。

RBF神经网络的训练速度很快,训练效果也很好。改进的神经网络算法。例如BP神经网络增加动量项、自适应学习率等措施,防止陷入局部极小影响预测效果。组合神经网络。

取长补短,将全局搜索能力强的算法与局部逼近快的算法组合起来,如遗传算法优化初始权值,再训练。这种方法比较灵活,可以和许多算法融合。全面考虑影响因素。

未来的预测值受许多因素影响,所以应该在基于历史数据的基础上,充分考虑各种因素,考虑得越周全,预知信息越多,预测效果一般更好。

BP算法及其改进 15

传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。

针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。

用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。

这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。

这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。

在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。

数值试验也表明了这一新算法的有效性。本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。

从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。

对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。

这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。

矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。

本文最后指出了新算法的优点,并指出了有待改进的地方。

关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用FeedforwardNeuralNetworksTrainingAlgorithmBasedonConvexOptimizationandItsApplicationinDepositForcastingJIAWen-chen(ComputerApplication)DirectedbyYEShi-weiAbstractThepaperstudiesprimarilytheapplicationofconvexoptimizationtheoryandalgorithmforfeedforwardneuralnetworks’trainingandconvergenceperformance.Itreviewsthehistoryoffeedforwardneuralnetworks,pointsoutthatthetrainingoffeedforwardneuralnetworksisessentiallyanon-linearproblemandintroducesBPalgorithm,itsadvantagesaswellasdisadvantagesandpreviousimprovementsforit.OneofthebigdisadvantagesofBPalgorithmanditsimprovementalgorithmsis:becauseitserrortargetfunctionisnon-convexintheweightvaluesbetweenneuronsindifferentlayersandexistslocalminimumpoint,thus,iftheweightvaluesenterlocalminimumpointinweightvaluesspacewhennetworkistrained,itisdifficulttoskiplocalminimumpointandreachtheglobalminimumpoint(i.e.themostoptimalpoint).Ifthishappening,thetrainingofnetworkswillbeunsuccessful.Toovercometheseessentialdisadvantages,thepaperconstructsanewerrortargetfunctionincludingrestrictionitemaccordingtoconvexfunction,Fenchelinequalityintheconjugateofconvexfunctionandpunishmentfunctionmethodinrestrictionoptimizationtheory.Whenfeedforwardneuralnetworksbasedonthenewtargetfunctionisbeingtrained,hiddenlayers’outputsareseenasoptimizationvariables.Themaincharacteristicsofthenewtargetfunctionareasfollows:1.Withfixedhiddenlayers’outputs,thenewtargetfunctionisconvexinconnectingweightvariables;withfixedconnectingweightvalues,thenewtargetfunctionisconvexinhiddenlayers’outputs.Thus,whenconnectingweightvaluesandhiddenlayers’outputsareoptimizedalternately,thenewtargetfunctionisconvexinthem,doesn’texistlocalminimumpoint,andthealgorithm’ssensitivenessisreducedfororiginalweightvalues.2.Becausethepunishmentfactorisincreasedgradually,weightvalues’searchingspacegetsmuchbigger,sobignetworkscanbetrainedandthepossibilityofenteringlocalminimumpointcanbereducedtoacertainextentinnetworktrainingprocess.Usingthesecharacteristicscanovercomeefficientlyintheformerfeedforwardneuralnetworks’trainingalgorithmsthebigdisadvantagethatnetworkstrainingenterslocalminimumpointeasily.Thiscreatsanewideaforfeedforwardneuralnetworks’learningalgorithmsbyusingconvexoptimizationtheory.Innetworkstraining,connectingweightvariablesandhiddenlayeroutputscanbeoptimizedalternately.Thenewalgorithmismuchbetterthantraditionalalgorithmsforfeedforwardneuralnetworks.Thenumericalexperimentsshowthatthenewalgorithmissuccessful.Bycomparingthenewalgorithmwiththetraditionalones,aprimaryconclusionoftheirrelationshipisreached.Itisprovedtheoreticallythatwhenthepunishmentfactornearsinfinity,thenewalgorithmisBPalgorithmyet.Themeaningandfunctionofthepunishmentfactorarealsoexplainedbynumericalexperiments.Forthree-layerfeedforwardneuralnetworks,whenthepunishmentfactorissmaller,hiddenlayeroutputs’variablerangeisbiggerandthisisinfavortoupdatingoftheconnectingweightsvalues,whenthepunishmentfactorisbigger,hiddenlayeroutputs’variablerangeissmallerandthisisnotinfavortoupdatingoftheconnectingweightsvaluesbutitcanimproveprecisionofnetworks.Thisexplainsthereasonthatthepunishmentfactorshouldbeincreasedgraduallyinnetworkstrainingprocess.ItalsoexplainsfeasibilityofthenewalgorithmandBPalgorithm’sdisadvantagethatconnectingweighvaluescannotbeupdatedsometimes.Depositforecastingisveryimportantindepositgeology.Thepreviousalgorithms’effectisnotgoodindepositforecastingbecauseofmuchmoreinputsamples.Thepaperappliesthenewalgorithmtodepositforecastingandexpectantresultisreached.Thepaperpointsoutthenewalgorithm’sstrongpointaswellasto-be-improvedplacesintheend.Keywords:feedforwardneuralnetworks,convexoptimizationtheory,trainingalgorithm,depositforecasting,application传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。

针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。

用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。

这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。

这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。

在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。

数值试验也表明了这一新算法的有效性。本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。

从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。

对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。

这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。

矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。

本文最后指出了新算法的优点,并指出了有待改进的地方。

关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用FeedforwardNeuralNetworksTrainingAlgorithmBasedonConvexOptimizationandItsApplicationinDepositForcastingJIAWen-chen(ComputerApplication)DirectedbyYEShi-weiAbstractThepaperstudiesprimarilytheapplicationofconvexoptimizationtheoryandalgorithmforfeedforwardneuralnetworks’trainingandconvergenceperformance.Itreviewsthehistoryoffeedforwardneuralnetworks,pointsoutthatthetrainingoffeedforwardneuralnetworksisessentiallyanon-linearproblemandintroducesBPalgorithm,itsadvantagesaswellasdisadvantagesandpreviousimprovementsforit.OneofthebigdisadvantagesofBPalgorithmanditsimprovementalgorithmsis:becauseitserrortargetfunctionisnon-convexintheweightvaluesbetweenneuronsindifferentlayersandexistslocalminimumpoint,thus,iftheweightvaluesenterlocalminimumpointinweightvaluesspacewhennetworkistrained,itisdifficulttoskiplocalminimumpointandreachtheglobalminimumpoint(i.e.themostoptimalpoint).Ifthishappening,thetrainingofnetworkswillbeunsuccessful.Toovercometheseessentialdisadvantages,thepaperconstructsanewerrortargetfunctionincludingrestrictionitemaccordingtoconvexfunction,Fenchelinequalityintheconjugateofconvexfunctionandpunishmentfunctionmethodinrestrictionoptimizationtheory.Whenfeedforwardneuralnetworksbasedonthenewtargetfunctionisbeingtrained,hiddenlayers’outputsareseenasoptimizationvariables.Themaincharacteristicsofthenewtargetfunctionareasfollows:1.Withfixedhiddenlayers’outputs,thenewtargetfunctionisconvexinconnectingweightvariables;withfixedconnectingweightvalues,thenewtargetfunctionisconvexinhiddenlayers’outputs.Thus,whenconnectingweightvaluesandhiddenlayers’outputsareoptimizedalternately,thenewtargetfunctionisconvexinthem,doesn’texistlocalminimumpoint,andthealgorithm’ssensitivenessisreducedfororiginalweightvalues.2.Becausethepunishmentfactorisincreasedgradually,weightvalues’searchingspacegetsmuchbigger,sobignetworkscanbetrainedandthepossibilityofenteringlocalminimumpointcanbereducedtoacertainextentinnetworktrainingprocess.Usingthesecharacteristicscanovercomeefficientlyintheformerfeedforwardneuralnetworks’trainingalgorithmsthebigdisadvantagethatnetworkstrainingenterslocalminimumpointeasily.Thiscreatsanewideaforfeedforwardneuralnetworks’learningalgorithmsbyusingconvexoptimizationtheory.Innetworkstraining,connectingweightvariablesandhiddenlayeroutputscanbeoptimizedalternately.Thenewalgorithmismuchbetterthantraditionalalgorithmsforfeedforwardneuralnetworks.Thenumericalexperimentsshowthatthenewalgorithmissuccessful.Bycomparingthenewalgorithmwiththetraditionalones,aprimaryconclusionoftheirrelationshipisreached.Itisprovedtheoreticallythatwhenthepunishmentfactornearsinfinity,thenewalgorithmisBPalgorithmyet.Themeaningandfunctionofthepunishmentfactorarealsoexplainedbynumericalexperiments.Forthree-layerfeedforwardneuralnetworks,whenthepunishmentfactorissmaller,hiddenlayeroutputs’variablerangeisbiggerandthisisinfavortoupdatingoftheconnectingweightsvalues,whenthepunishmentfactorisbigger,hiddenlayeroutputs’variablerangeissmallerandthisisnotinfavortoupdatingoftheconnectingweightsvaluesbutitcanimproveprecisionofnetworks.Thisexplainsthereasonthatthepunishmentfactorshouldbeincreasedgraduallyinnetworkstrainingprocess.ItalsoexplainsfeasibilityofthenewalgorithmandBPalgorithm’sdisadvantagethatconnectingweighvaluescannotbeupdatedsometimes.Depositforecastingisveryimportantindepositgeology.Thepreviousalgorithms’effectisnotgoodindepositforecastingbecauseofmuchmoreinputsamples.Thepaperappliesthenewalgorithmtodepositforecastingandexpectantresultisreached.Thepaperpointsoutthenewalgorithm’sstrongpointaswellasto-be-improvedplacesintheend.Keywords:feedforwardneuralnetworks,convexoptimizationtheory,trainingalgorithm,depositforecasting,applicationBP算法及其改进2.1BP算法步骤1°随机抽取初始权值ω0;2°输入学习样本对(Xp,Yp),学习速率η,误差水平ε;3°依次计算各层结点输出opi,opj,opk;4°修正权值ωk+1=ωk+ηpk,其中pk=,ωk为第k次迭代权变量;5°若误差E0,则令a=η0,b=η1;若Φ′(η1)。

c语言实现*/遗传算法改进BP神经网络原理和算法实现怎么弄

遗传算法有相当大的引用。

遗传算法在游戏中应用的现状在遗传编码时,一般将瓦片的坐标作为基因进行实数编码,染色体的第一个基因为起点坐标,最后一个基因为终点坐标,中间的基因为路径经过的每一个瓦片的坐标。

在生成染色体时,由起点出发,随机选择当前结点的邻居节点中的可通过节点,将其坐标加入染色体,依此循环,直到找到目标点为止,生成了一条染色体。重复上述操作,直到达到指定的种群规模。

遗传算法的优点:1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。2、遗传算法直接以目标函数值作为搜索信息。

它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

遗传算法的缺点:遗传算法在进行编码时容易出现不规范不准确的问题。

BP神经网络算法的关键词

BP算法是一种有监督式的学习算法,其主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。

具体步骤如下:(1)初始化,随机给定各连接权[w],[v]及阀值θi,rt。

(2)由给定的输入输出模式对计算隐层、输出层各单元输出bj=f(■wijai-θj)ct=f(■vjtbj-rt)式中:bj为隐层第j个神经元实际输出;ct为输出层第t个神经元的实际输出;wij为输入层至隐层的连接权;vjt为隐层至输出层的连接权。

dtk=(ytk-ct)ct(1-ct)ejk=[■dtvjt]bj(1-bj)(3)选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

传统的BP算法,实质上是把一组样本输入/输出问题转化为一个非线性优化问题,并通过负梯度下降算法,利用迭代运算求解权值问题的一种学习方法,但其收敛速度慢且容易陷入局部极小,为此提出了一种新的算法,即高斯消元法。

2.1改进算法概述此前有人提出:任意选定一组自由权,通过对传递函数建立线性方程组,解得待求权。

本文在此基础上将给定的目标输出直接作为线性方程等式代数和来建立线性方程组,不再通过对传递函数求逆来计算神经元的净输出,简化了运算步骤。

没有采用误差反馈原理,因此用此法训练出来的神经网络结果与传统算法是等效的。

其基本思想是:由所给的输入、输出模式对通过作用于神经网络来建立线性方程组,运用高斯消元法解线性方程组来求得未知权值,而未采用传统BP网络的非线性函数误差反馈寻优的思想。

2.2改进算法的具体步骤对给定的样本模式对,随机选定一组自由权,作为输出层和隐含层之间固定权值,通过传递函数计算隐层的实际输出,再将输出层与隐层间的权值作为待求量,直接将目标输出作为等式的右边建立方程组来求解。

现定义如下符号(见图1):x(p)输入层的输入矢量;y(p)输入层输入为x(p)时输出层的实际输出矢量;t(p)目标输出矢量;n,m,r分别为输入层、隐层和输出层神经元个数;W为隐层与输入层间的权矩阵;V为输出层与隐层间的权矩阵。

具体步骤如下:(1)随机给定隐层和输入层间神经元的初始权值wij。(2)由给定的样本输入xi(p)计算出隐层的实际输出aj(p)。

为方便起见将图1网络中的阀值写入连接权中去,令:隐层阀值θj=wnj,x(n)=-1,则:aj(p)=f(■wijxi(p))(j=1,2…m-1)。(3)计算输出层与隐层间的权值vjr。

以输出层的第r个神经元为对象,由给定的输出目标值tr(p)作为等式的多项式值建立方程,用线性方程组表示为:a0(1)v1r+a1(1)v2r+…+am(1)vmr=tr(1)a0(2)v1r+a1(2)v2r+…+am(2)vmr=tr(2)……a0(p)v1r+a1(p)v2r+…+am(p)vmr=tr(p)简写为:Av=T为了使该方程组有唯一解,方程矩阵A为非奇异矩阵,其秩等于其增广矩阵的秩,即:r(A)=r(A┊B),且方程的个数等于未知数的个数,故取m=p,此时方程组的唯一解为:Vr=[v0r,v2r,…vmr](r=0,1,2…m-1)(4)重复第三步就可以求出输出层m个神经元的权值,以求的输出层的权矩阵加上随机固定的隐层与输入层的权值就等于神经网络最后训练的权矩阵。

现以神经网络最简单的XOR问题用VC编程运算进行比较(取神经网络结构为2-4-1型),传统算法和改进BP算法的误差(取动量因子α=0.0015,步长η=1.653)

bp神经网络算法陷入了局部最小值怎么办

使用改进的BP算法,增加动量项,或者自适应学习率。和别的优化算法组合,例如遗传算法优化初始权值,提前锁定全局最优。重新训练,每次训练的结果都是不同的,下一次的训练很有可能不会陷入局部极小。

更改学习函数、训练函数再试。

谁有用于数据预测的用遗传算法改进的BP神经网络程序

给你来一段%主程序%数据归一化预处理nntwarnoff[pn,minp,maxp]=premnmx(p);pp=(pn+1)/2;[tn,mint,maxt]=premnmx(t);%建立BP网络net=newff(minmax(pp),[15,1],{'logsig','purelin'},'trainlm');%应用遗传算法对优化网络初始值in=size(pn,1);out=size(tn,1);hi=15;%隐含层节点数L=in*hi+hi*out+hi+out;%遗传算法编码长度aa=ones(L,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'ISeval');%初始化种群gen=100;%遗传世代%调用GAOT工具箱,其中目标函数定义为ISeval[x,endPop,bPop,trace]=ga(aa,'ISeval',[],initPpp,[1e-611],'maxGenTerm',…,gen,'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2gen3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');holdonplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-SquaredError');figure(2)plot(trace(:,1),trace(:,3),'r-');holdonplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%将得到的权值矩阵赋给尚未开始训练的BP网络[w1,b1,w2,b2,a1,a2,se,eval]=IScode(x);%调用自定义编解码函数%创建网络{1,1}=w1;{2,1}=w2;net.b{1,1}=b1;net.b{2,1}=b2;%设置训练参数=10;net.trainParam.epochs=5000;=0.05;%训练网络net=train(net,pp,t);%自定义目标函数function[sol,eval]=ISeval(sol,options)%eval-thefittnessofthisindividual%sol-theindividual,returnedtoallowforLamarckianevolution%options-[current_generation]p=[];%原始输入数据t=[];%原始输出数据in=size(p,1);out=size(t,1);hi=15;%隐含层节点数L=in*hi+hi*out+hi+out;%遗传算法编码长度fori=1:L,x(i)=sol(i);end;[w1,b1,w2,b2,a1,a2,se,eval]=IScode(x);%自定义编解码函数function[w1,b1,w2,b2,a1,a2,se,eval]=IScode(x)[pn,minp,maxp]=premnmx(p);pp=(pn+1)/2;[tn,mint,maxt]=premnmx(t);in=size(pn,1);%输入层结点数out=size(tn,1);%隐含层结点数hi=15;%隐含层结点数L=in*hi+hi*out+hi+out;%遗传算法编码长度%前in*hi个编码为w1fori=1:hi,forj=1:in,w1(i,j)=x(in*(i-1)+j);endend%接着的hi*out个编码为w2fori=1:out,forj=1:hi,w2(i,j)=x(hi*(i-1)+j+in*hi);endend%接着的hi个编码为b1fori=1:hi,b1(i,1)=x((in*hi+hi*out)+i);end%最后的out个编码b2fori=1:out,b2(i,1)=x((in*hi+hi*out+hi)+i);end%计算hi层与out层的输出a1=tansig(w1*pp,b1);a2=purelin(w2*a1,b2);%计算误差平方和se=sumsqr(t-a2);eval=1/se;%遗传算法的适应值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值