week8 GAN

GAN

Our task in Training Generative Models

在这里插入图片描述

生成模型G

生成模型G:

  • generate fake samples indistinguishable from real samples

    不断学习训练集中真实数据的概率分布,目标是将输入的随机噪声转化为可以以假乱真的图片(生成的图片与训练集中的图片越相似越好)

  • A generator 𝐺that induces distribution as close to the true data distribution as possible – this is the generator

    发电机𝐺诱导分布尽可能靠近真实的数据分布 - 这是生成器

判别模型D

判别模型D:

discriminate real and fake samples

判断一个图片是否是真实的图片,目标是将生成模型G产生的“假”图片与训练集中的“真”图片分辨开。

A generator 𝐺that induces distribution as close to the true data distribution as possible – this is the generator

发电机𝐺诱导分布尽可能靠近真实的数据分布 - 这是生成器

GAN

注意:

Output from GAN is the generator 𝐺, not an explicit density

GAN的输出是发电机𝐺,而不是显式密度

optimal discriminator(最优判别器)

img

img
在这里插入图片描述

optimal generator(最优生成器)- 生成的样本跟真正的样本同分布

img

Mode collapse

min-max problem

在这里插入图片描述

最大化判断正确的概率max(D(x)), 最小化犯错的概率min(1-D(G(z))),G(z)为生成样本为真的概率

图片名称

在这里插入图片描述

纳什均衡点 (Nash equilibrium point)

纳什均衡点 (Nash equilibrium point):满足minmax目标函数的最优点

在这里插入图片描述

自编码器和GAN的区别

VAE(Variational Auto-Encoder)和GAN(Ganerative Adversarial Networks)都是生成模型(Generative model

自编码器和GAN的区别

img

img

  1. GAN生成的效果要优于VAE

  2. GAN比VAE要难于训练

  3. VAE希望通过一种显式(explicit)的方法找到一个概率密度,并通过最小化对数似函数的下限来得到最优解.

    GAN则是对抗的方式来寻找一种平衡,不需要认为给定一个显式的概率密度函数

  4. AutoEncoder直接对真实图片和生成图片进行像素级别的监督

    GAN通过学习一个判别器来让真实图片和生成图片的整体判断趋于一致

  5. VAE生成的图像不够真实,GAN的训练中又会碰到例如mode collapse问题

相同点:

  • 生成数据的模式都是用了随机噪声(如常用的就是高斯分布)。
  • 在建模分布时,都需要度量噪声和训练数据的分布差异。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值