自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 收藏
  • 关注

原创 java结构体排序 优先队列降序排列

【代码】java结构体排序。

2024-06-12 18:53:21 87 1

原创 通用域适应(三)Prototypical Partial Optimal Transport for Universal Domain Adaptation

通用领域自适应(UniDA)要求我们在(即标签存在于两个领域的样本)和“未知”样本(即标签只存在于一个领域的样本)。本文从分布匹配的角度考虑这一问题,只需要对两个分布进行部分对齐即可。提出了一种新的方法,称为小批量原型部分最优传输(m-PPOT),对UniDA进行部分分配对齐。在训练阶段,除了最小化m-PPOT外,我们还对原型部分最优传输(PPOT)方法具体来说,我们将UniDA中的分布对齐建模为一个部分最优传输(POT)问题,使用POT在两个域之间对齐一小部分数据(主要来自公共类)。

2023-11-27 16:46:48 322

原创 遥感图像场景分类(一)Universal Domain Adaptation for Remote Sensing Image Scene Classification

本文的源数据是不可访问的,白盒?预训练模型预训练模型vgg16用于l_style;预训练模型resnet50用于特征提取器;分类器网络是一个单层的全连接网络鉴别器D和D0由三个完全连接的层组成,前两个层之间有ReLU。算法过程:theta_d用于促进域分类,theta_f,theta_c用于在源域数据上训练和域混淆,theta_d’为非对抗域鉴别器D’用于对源域 目标域数据进行正确域鉴别。

2023-10-27 13:26:34 831 1

原创 黑盒预测器(三)Source-free and Black-box Domain Adaptation via Distributionally Adversarial Training

本文为多源域相关的UDA问题。?如图1所示,源模型在源域上已训练完毕,目标数据不能访问的源模型即为黑盒预测器。目标数据也不能访问源域数据,

2023-06-24 16:49:18 286

原创 高光谱(二)Confident Learning-Based Domain Adaptation for Hyperspectral Image Classification

图1右侧,自信学习尝试评估伪标签Y(戴帽),并从中选择自信标签Yc(戴帽),数量为nc。引入SVM分类器来获得目标域样本的预测概率(戴帽)P。**计数矩阵Cy,yt由P和Y得到,计算每个类别中属于这个类的具有足够大概率的样本的数量。**然后,C y,yt经过归一化得到Q y,yt,用来评估伪标签。通过剪枝操作,将伪标签分为可信标签和不可信标签。然后选择具有自信标签的目标样本作为域适应部分的训练数据。

2023-06-03 22:43:53 456

原创 最优传输(八)Hierarchical optimal transport for unsupervised domain adaptation

1.第一阶段使用wasserstein光谱聚类将m个目标域样本分组在k个聚类中,目标域可以用k个聚类结构的度量来表示,见eq(17). Wasserstein成本矩阵元素Wh,l被定义为度量uh和vl之间的2-Wasserstein距离.见eq(19),W=gamma*C, C为Ch和CL l之间的成对平方欧几里得距离的代价矩阵,gamma是uh和vl之间的正则化最优传输计划.2.根据eq(20)中的一对一匹配关系将源结构和目标结构配对之后,就要将每个类C中的源样本传输到相应簇Cl。

2023-05-18 16:03:28 508

原创 高光谱(四)An Entropic Optimal Transport Loss for Learning Deep Neural Networks under Label Noise in Remo

本文提出的想法在3.2 label noise ,指出了样本中可能存在标签噪声,而错误分类的概率矩阵通常是未知的。本文的解决方案在4.3,找到训练集噪声标签分布~y与分类器 f对目标样本的输出分布f(xt)的最优配对方案,见eq14.

2023-04-09 18:37:29 203

原创 开放集(七)Adversarial Reciprocal Points Learning for Open Set Recognition

训练过程分为两个阶段:第一阶段包括两个损失,即算法1:1)第一个损失是分类损失,目的是最大化任意类别样本与与该类互换点(非类区域)的距离,也就是最大化样本成为自身所属类的概率。2)第二个损失是开放空间损失,目的是使,降低开放空间风险。(即使得开放空间尽可能的小)第二阶段,包括三个损失:1)第一个损失是分类器损失,见eq 19,其目的是为了对已知类进行分类,同时使生成的未知类距离未知空间尽可能近(因而距离已知类就尽可能远)。

2023-04-03 21:17:15 1394

原创 开放集(四) Towards Novel Target Discovery Through Open-Set Domain Adaptation

图1.对提出的框架进行说明:Xt包含Xs的一些看不见的类别。以卷积神经网络(如ResNet[16])为骨干,提取视觉特征Xs/t,输入GZ,通过部分对齐学习域不变特征 Zs/t。然后 GA将 Zs/t映射到语义属性As。最后的分类任务融合了视觉-语义特征,一个是D,从目标数据中识别可见/不可见,另一个是C,将所有跨域数据识别为k +1个类(即k个可见+1个不可见的大类别)。图1所示目标发现框架同时从源域中观察到的类别中识别目标域数据,并从源域中恢复未知目标类的可解释语义属性。

2023-03-12 15:50:44 245

原创 3.无重复字符的最长子串——滑动窗口

子串是原字符串连续的字符序列。主要就是学会滑动窗口。

2023-03-11 15:39:29 134

原创 开放集(二)Open set domain adaptation:ATI

本文的内容相对简单容易理解,主要的思想都在图2的(b),©两步中。(b)这一步是将目标样本 t 进行,选择距离 t 最近的源域类中心 c,便是 t 所属的类别;同时也要兼顾到目标样本 t 的所有邻居节点 t’,若邻居 t’ 被分配给了另一个类 c’,则,可理解为因为 t 与 t’ 是邻居,所以需要使得二者所属的类尽可能地相似靠近。(c)这一步就是通过最小化相同类别标记的源域和目标域样本的距离来将。算法过程为在(b)(c)之间反复迭代,直到收敛。

2023-03-01 14:04:55 313

原创 开放集(一)Open Set Domain Adaptation: Theoretical Bound and Algorithm

这一篇论文感觉十分偏理论,我感觉只是理解了个大概。1.第一步是使用OSNN(开放集最近邻)算法对目标域样本进行标签预测。通过公式(12)得到一个优化后的分类器h。2.计算矩阵L,W。L为拉普拉斯矩阵,可写成D − W, D为对角矩阵,Dii = j=1到 ns+nt 对Wij求和,W矩阵为样本相似度矩阵。3.迭代过程。每一次迭代中,(1)计算MMD矩阵M;(2)通过式(21)计算 β;(3)β的转置×K得到的结果为新一轮更新的目标域伪标签的值。

2023-02-27 22:34:37 1031 1

原创 基础论文(六)WGAN

本文首先分析了GAN的两种缺陷:本文提出的Wasserstein距离可解决梯度消失问题,利用一个参数w数值范围限制在[-c,c]的判别器神经网络来最大化距离(对偶原理),就可以近似Wasserstein距离。在此近似最优判别器的条件下优化生成器使得Wasserstein距离缩小,就能有效拉近生成分布与真实分布。GAN由判别器(D)和生成器(G)组成。判别器一般使用二分类的神经网络来构建,一般将取自数据集的样本视为正样本,而生成的样本标注为负样本。生成器的任务是接收随机噪声,然后使用反卷积网络来创建一个

2023-01-31 23:20:15 2252 1

原创 基础论文(五)DCGAN

本文使用一种更加稳定的结构训练生成对抗网络,用卷积层代替池化层,全连接层等操作使得网络更深。

2023-01-29 18:11:42 155

原创 基础论文(四)Image-to-Image Translation with Conditional Adversarial Networks

这篇文章俗称pix2pix(即像素映射到像素),和上一篇cycleGAN是相对的,本文用的是已配对的训练集,而cycleGAN是无配对的训练集。

2023-01-26 23:32:43 458

原创 基础论文(三)CycleGAN

本文的目标是在未配对的数据集上训练生成目标域风格的源域图片G(x);同时也要翻转过来,生成源域风格的目标域图片F(y),比如 相片到莫奈风格绘画。

2023-01-24 22:56:09 662

原创 基础论文(二)CoGAN

判别模型估计输入图像来自pX的概率,如果x∼pX, f(x) = 1,如果x∼pG, f(x) = 0。在生成模型中(任务B),性能与权重共享层数呈正相关,而在判别模型中(任务A),性能与权重共享层数不相关。我们强制g1和g2的前几层具有相同的结构并共享权重,即θg(i) 1 = θg(i) 2,因为i = 1,2,…,多域图像的联合分布是一个概率密度函数,它为不同域图像的每次联合出现给出一个密度值。生成模型的目标是合成类似真实图像X的图像,而判别模型的目标是区分真实图像和合成图像。

2023-01-18 14:11:46 652

原创 基础论文 (一) ADDA

基于某种确定的度量,将其中某个域的特征映射到另一个域的特征空间中(“非对称”映射),或将源域和目标域的特征一起映射到一个新的共享空间(“对称”映射)。

2023-01-14 23:33:03 3192

原创 高光谱图像域适应论文(一)Unsupervised Domain Adaptation With Dense-Based Compaction for Hyperspectral Imagery

DenseNet中每个层都会接受其前面所有层作为其额外的输入(见图2DenseBlock),类似于ResNet。DenseNet的另一大特色是通过特征在channel维度上的连接来实现特征重用这些特点让DenseNet在参数和计算成本更少的情形下实现比ResNet更优的性能,计算成本小是因为k比较小。

2023-01-11 21:42:55 644 1

原创 最优传输论文(七)Reliable Weighted Optimal Transport for Unsupervised Domain Adaptation

见前言

2023-01-05 22:49:02 716

原创 最优传输论文(八)Enhanced Transport Distance for Unsupervised Domain Adaptation

1.将Kantorovich潜在网络进行参数化,并根据深度特征返回最优传输计划g(f(x))用神经网络g来表示潜在特征对偶变量v,对应参数Wg , 优化传输计划πε的过程转化为优化网络g的过程.对网络g进行参数优化后,利用当前参数Wg计算出最优传输距离Wε(µ,ν)2.利用attention模块重新衡量传输距离,对距离矩阵进行重加权操作,使一个mini-batch实现真实的数据分布3.最终,通过Kantorovich潜在网络计算得到的g(f t j)与重加权后的距离矩阵c(f s i,f t j)得

2023-01-04 20:29:48 567

原创 最优传输论文(六)Multi-Source Distilling Domain Adaptation

本文提出了一种多源域适应方法,方法分为四步:1.为每个源域分别训练特征提取器和分类器。2.学习目标编码器F T i将目标特征映射到源域空间。类似于GAN对抗训练方式,1)训练Di来最大化从F T i编码后的目标特征和源特征的Wasserstein距离,目的是将源域目标域特征进行区分。2)训练F T i来使D i出错,最小化F T i编码后目标特征和源特征的Wasserstein距离,将二者进行混淆3.选取Wasserstein距离目标特征近的一半源域样本微调源分类器Ci。

2022-12-26 22:21:47 409

原创 最优传输论文(五)Multi-Adversarial Domain Adaptation

这篇文章是根据经典DANN衍生出来的,DANN是只有一个域鉴别器,而MADA对应每个类都有一个域鉴别器,基本原理都一样,建议先看看DANN,学会梯度翻转层,看明白代码再来看这篇文章。需要注意的一点操作是给生成特征Gf (x)进行加权得到yk i *Gf(xi),不仅能将无关的类通过概率过滤掉,而且能训练出,将每个点xi与最相关的类进行对齐,避免了负迁移。

2022-12-11 17:47:14 903

原创 最优传输论文(四)Deep multi-Wasserstein unsupervised domain adaptation

在域适应过程中,标准泛化边界提示我们最小化三个项的总和:(a)源域真实风险,(b)源和目标域之间的散度,©。本文中提出MCDA方法——最小化前两项,同时控制第三项,从而解决忽略第三项带来的问题。MCDA受益于高度自信的目标样本(使用softmax预测),以最小化按类别的Wasserstein距离,并有效地。

2022-12-09 00:13:47 542

原创 最优传输论文(三) Normalized Wasserstein for Mixture Distributions with Applications in Adversarial Learning

对于混合物分布,已建立的距离度量,如Wasserstein距离,没有考虑到不平衡的混合物比例。因此,即使两个混合物分布具有相同的混合物成分但不同的混合物比例,它们之间的Wasserstein距离也会很大。在本文中,我们通过引入归一化Wasserstein测度来解决这个问题。其关键思想是引入混合比例作为优化变量,有效地规范化Wasserstein公式中的混合比例。

2022-12-05 16:01:34 491

原创 最优传输论文(二)Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation

DeepJDOT是基于ot的将特征和标签联合的差异度量进行优化的方法,Deep的含义为使用CNN构造特征提取器g和分类器f。

2022-12-01 17:40:36 1114 1

原创 最优传输论文(一)Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation

sliced就是投影,sliced wasserstein由于计算成本小,可作为差异度量指导特征生成器和分类器的优化。

2022-11-29 22:03:20 2960

原创 22吉大计算机学硕考研389分经验分享

当你决定考研并开始学习的那一刻起,你便可以自豪地说,你便是当代所有青年中最上进的那一批人。但在考研这条道路上,光有勤奋是万万不够的,选择比努力更重要是真理,找到合适自己的考研院校和学习方法更加重要。先制定自己的全年考研规划并且找到合适自己的学习心态和学习方法往往可以做到事半功倍,一战上岸。我的这篇文章便涵盖了我两年考研的一点心得,有兴趣的同学可以认真看看。我报考的是吉林大学计算机学硕,初试总分是389分,政治72分,英语一75分,数学一117分,941专业课125分,这个分数不算很高,初试排名第16名,

2022-04-11 22:46:44 1492 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除