【机器学习】线性回归的基本概念

机器学习 多元线性回归



前言

本文作为自己学习人工智能的开端,学习并掌握及机器学习的相关内容,逐渐了解机器学习,掌握相关的技术,从零开始,逐渐成长


一、基本概念

线性回归是机器学习中有监督机器学习下的一种算法,回归问题主要关注的是因变量(需要预测的值,可以是一个或者多个)和一个或多个数值型的**自变量(预测变量)**之间的关系。
需要预测的值:即目标变量,target,y,连续值预测变量
影响目标变量的因素:X1…Xn,可以是连续值也可以是离散值
因变量和自变量之间的关系:也就是模型,model,是我们要求解的

1. 连续值

连续的,不间断变化的值,表现在坐标系上可以表示为连续的不间断的线

2. 离散值

间断的,表现在坐标系上可以表示为各自独立的点。

3. 简单线性回归

  y = ω x + b \ y={\omega}x+b  y=ωx+b为对应的公式。
- 其中 y y y是目标变量,也就是未来要预测的值
- x x x是影响 y y y的因素,w,b是公式上的参数也就是要求的模型

4. 最优解

Actual value:真实值,一般用y来表示。
Predicted value:预测值,是把已知的 x x x带入到公式里面和猜出来的参数w,b计算得到的,一般用 y y y表示
Error:误差,预测值与真实值的差距,一般采用 ε {\varepsilon} ε表示
最优解:尽可能的找到一个模型使得整体的误差最小,整体的误差通常叫做损失Loss
Loss:整体的误差,Loss通过损失函数Loss function计算得到

5. 多元线性回归

现实生活中,往往影响结果y的因素不止一个,这时x就从一个变成了n个, X 1 X_1 X1 X n X_n Xn同时简单线性回归的公式也就不再适用了,多元线性回归公式如下:
y = ω 1 X 1 + ω 2 X 2 + . . . + ω n X n + b y = {\omega}_1X_1 + {\omega}_2X_2 + ... + {\omega}_nX_n + b y=ω1X1+ω2X2+...+ωnXn+b
b是截距,也可以用 w 0 w_0 w0表示
y = ω 1 X 1 + ω 2 X 2 + . . . + ω n X n + ω 0 y = {\omega}_1X_1 + {\omega}_2X_2 + ... + {\omega}_nX_n + {\omega}_0 y=ω1X1+ω2X2+...+ωnXn+ω0
y = ω 1 X 1 + ω 2 X 2 + . . . + ω n X n + ω 0 ∗ 1 y = {\omega}_1X_1 + {\omega}_2X_2 + ... + {\omega}_nX_n + {\omega}_0 * 1 y=ω1X1+ω2X2+...+ωnXn+ω01
使用向量来表示,X表示所有的变量,是一维变量,W表示所有的系数(包含 w 0 w_0 w0),是一维向量,根据向量乘法规律,可以这么写
y = W T X y = W^TX y=WTX

二、正规方程

1.最小二乘法矩阵表示

y i y_i yi表示真实值, h θ ( x i ) h_\theta(x_i) hθ(xi)表示预测的值,模型、算法,线性回归,方程
最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程式的数目正好等于未知数的个数),从而可以求接触这些未知参数。这个有确定解的代数方程组称为最小二乘法估计的正规方程。公式如下:
θ = ( X T X ) − 1 X T y \theta = (X^TX)^{-1}X^{T}y θ=(XTX)1XTy
W = ( X T X ) − 1 X T y W = (X^TX)^{-1}X^Ty W=(XTX)1XTy
最小二乘法的公式表示:
J ( θ ) = 1 2 ∑ i = 0 n ( h θ ( x i ) − y i ) 2 J(\theta) = \frac{1}{2}\sum_{i=0}^{n}(h_{\theta}(x_i)-y_i)^2 J(θ)=21i=0n(hθ(xi)yi)2
其中:
y = h θ ( X ) = X θ y=h_{\theta}(X)=X\theta y=hθ(X)=表示全部数据,是矩阵,X表示多个数据,进行矩阵乘法时,放在前面
y i = h θ ( X ( i ) ) = θ T x ( i ) y_i=h_\theta(X^{(i)}) = \theta^Tx^{(i)} yi=hθ(X(i))=θTx(i)表示第i个数据,是向量,所以进行乘法时,其中一方需要进行转置
因为最大似然公式中有个负号,所以最大总似然成了最小化负号后面的部分,到这里,我们就已经推导出来了。
使用矩阵表示:
J ( θ ) = 1 2 ∑ i = 0 n ( h θ ( x i ) − y ) ( h θ ( x i ) − y ) J(\theta) = \frac{1}{2}\sum_{i = 0}^{n}(h_\theta(x_i) - y)(h_\theta(x_i) - y) J(θ)=21i=0n(hθ(xi)y)(hθ(xi)y)
J ( θ ) = 1 2 ( X θ − y ) ( X θ − y ) J(\theta) = \frac{1}{2}(X\theta -y )(X\theta - y) J(θ)=21(y)(y)

2.多元一次方程举例

  1. 二元一次方程组如下:
    { x + y = 14 2 x − y = 10 \begin{cases} x+y=14\\ 2x-y=10 \end{cases} {x+y=142xy=10
    3.三元一次方程组如下:
    { x − y + z = 100 2 x + y − z = 80 3 x − 2 y + 6 z = 256 \begin{cases} x - y + z = 100 \\ 2x + y - z = 80 \\ 3x -2y + 6z = 256 \end{cases} xy+z=1002x+yz=803x2y+6z=256
  • 30
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值