小学生数学题 - 用第一类斯特林数解决自然数幂求和这个标签真长

题目和标签都是假的。
题目大意:给定 p, k, n p ,   k ,   n ,求:
(ni=11i)mod  pk ( ∑ i = 1 n 1 i ) m o d     p k
保证有解, pkn1018, p105 p k n ≤ 10 18 ,   p ≤ 10 5 p p 是奇素数。
例如,当p=3, k=1, n=6的时候,尽管 13 1 3 16 1 6 都没有意义,但是他们的和是 12 1 2 ,就可以计算。
题解:来一波充斥着神奇的推导。

f(n,k)=(i=1n1i)mod  pk f ( n , k ) = ( ∑ i = 1 n 1 i ) m o d     p k

g(n,k)=(i=1,i mod p0n1i)mod  pk g ( n , k ) = ( ∑ i = 1 , i   m o d   p ≠ 0 n 1 i ) m o d     p k

显然有:
f(n,k)=g(n,k)+f(np,k+1)pmod  pk f ( n , k ) = ( g ( n , k ) + f ( ⌊ n p ⌋ , k + 1 ) p ) m o d     p k

考虑g怎么求:
g(n,k)=(i=1,i mod p0n1i)mod  pk g ( n , k ) = ( ∑ i = 1 , i   m o d   p ≠ 0 n 1 i ) m o d     p k

我们假定 i=bp+a, a[1,p) i = b p + a ,   a ∈ [ 1 , p )
g(n,k)=a=1p1b=0nap1a+bpmod  pk g ( n , k ) = ( ∑ a = 1 p − 1 ∑ b = 0 ⌊ n − a p ⌋ 1 a + b p ) m o d     p k

g(n,k)=a=1p11ab=0nap11+bpamod  pk g ( n , k ) = ( ∑ a = 1 p − 1 1 a ∑ b = 0 ⌊ n − a p ⌋ 1 1 + b p a ) m o d     p k

我们注意到:
11z=izi 1 1 − z = ∑ i z i

那么令
z=bpa z = − b p a

并代入上式,得到:
g(n,k)=a=1p11ab=0napi=0k1(bpa)imod  pk g ( n , k ) = ( ∑ a = 1 p − 1 1 a ∑ b = 0 ⌊ n − a p ⌋ ∑ i = 0 k − 1 ( − b p a ) i ) m o d     p k

这里内层的 i i 之所以枚举到k1是由于当 ki k ≤ i 时在对 pk p k 取模结果是0。
继续化简,将 i i 放到外层枚举:
g(n,k)=(i=0k1(p)ia=1p11ai+1b=0napbi)mod  pk

g(n,k)=(i=0k1(p)ia=1p11ai+1Si(nap))mod  pk g ( n , k ) = ( ∑ i = 0 k − 1 ( − p ) i ∑ a = 1 p − 1 1 a i + 1 S i ( ⌊ n − a p ⌋ ) ) m o d     p k

其中 Sk(n) S k ( n ) 表示从0到n的k次幂和,我们推导这个。注意到因为 a(0,p) a ∈ ( 0 , p ) 所以 nap ⌊ n − a p ⌋ 最小值和最大值之差不会超过1。
我们知道 xk x k _ 可以用带符号第一类斯特林数展开,即:
xk=i=1ks(k,i)xi x k _ = ∑ i = 1 k s ( k , i ) x i

那么我们把 i=k i = k 的那一项单独拿出来,就会知道:
xk=xki=1k1s(k,i)xi x k = x k _ − ∑ i = 1 k − 1 s ( k , i ) x i

因此:
Sk(n)=x=0nxk=x=0n(xki=1k1s(k,i)xi) S k ( n ) = ∑ x = 0 n x k = ∑ x = 0 n ( x k _ − ∑ i = 1 k − 1 s ( k , i ) x i )

我们注意到:
x=0nxk=x=0n(xk)k!=1k!x=kn(xk)=1k!(n+1k+1)=(n+1)k+1k+1 ∑ x = 0 n x k _ = ∑ x = 0 n ( x k ) k ! = 1 k ! ∑ x = k n ( x k ) = 1 k ! ( n + 1 k + 1 ) = ( n + 1 ) k + 1 _ k + 1

最后一步的转化可以显然的归纳证明是对的。
而:
x=0ni=1k1s(k,i)xi=i=1k1s(k,i)x=0nxi=i=1k1s(k,i)Si(n) ∑ x = 0 n ∑ i = 1 k − 1 s ( k , i ) x i = ∑ i = 1 k − 1 s ( k , i ) ∑ x = 0 n x i = ∑ i = 1 k − 1 s ( k , i ) S i ( n )

因此:
Sk(n)=(n+1)k+1k+1i=1k1s(k,i)Si(n) S k ( n ) = ( n + 1 ) k + 1 _ k + 1 − ∑ i = 1 k − 1 s ( k , i ) S i ( n )

这样 Si(n)(i=0...k) S i ( n ) ( i = 0... k ) 就可以在 O(k2) O ( k 2 ) 时间内求出。
前面的下降幂下面的除数不能直接逆元算,要特判。
乘法取模不能直接乘,可能会爆炸longlong,因此我开了__int128。
在算g函数的时候需要预处理幂和,这样复杂度显然就是 O(pklgpn) O ( p k l g p n ) 的了。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<assert.h>
#define lint long long
#define MAXK 200
#define MAXP 100010
#define debug(x) cerr<<#x<<"="<<x
#define sp <<" "
#define ln <<endl
using namespace std;
lint s[MAXK][MAXK],pk[MAXK],ivk[MAXP][MAXK];
inline lint tms(lint x,lint y,lint k) { return (__int128)x*y%pk[k]; }
inline lint fast_pow(lint x,lint k,lint qk)
{
    lint ans=1ll;
    for(;k;k>>=1,x=tms(x,x,qk))
        if(k&1ll) ans=tms(ans,x,qk);
    return ans;
}
inline lint prelude_stirling(lint n,lint k)
{
    s[1][1]=1;
    for(lint i=2;i<=n;i++)
        for(lint j=1;j<=i;j++)
            s[i][j]=(tms(s[i-1][j],i-1,k)+s[i-1][j-1])%pk[k];
    for(lint i=1;i<=n;i++)
        for(lint j=1;j<=i;j++)
            if((i+j)&1) s[i][j]=(pk[k]-s[i][j])%pk[k];
    return 0ll;
}
lint sk1[MAXK],sk2[MAXK];
lint getS(lint k,lint n,lint qk,lint *sk)
{
    memset(sk,0,sizeof(lint)*(k+1)),sk[0]=(n+1)%pk[qk];
    if(n<=0||k==0) return 0;
    if(n&1) sk[1]=tms((n+1)/2,n,qk);
    else sk[1]=tms(n/2,n+1,qk);
    for(lint i=2;i<=k;i++)
    {
        if(n-i+1<=0) sk[i]=0;
        else{
            sk[i]=1;lint nc=1;
            for(lint j=n+1;j>=n-i+1;j--)
                if(j%(i+1)==0&&nc) sk[i]=tms(sk[i],j/(i+1),qk),nc=0;
                else sk[i]=tms(sk[i],j,qk);
        }
        for(lint j=1;j<i;j++)
        {
            sk[i]=(sk[i]-tms(sk[j],s[i][j]%pk[qk],qk))%pk[qk];
            if(sk[i]<0) sk[i]+=pk[qk];
        }
    }
    return 0ll;
}
lint G(lint n,lint k)
{
    lint ans=0ll,r=n%pk[1];
    getS(k-1,n/pk[1]-1,k,sk1),getS(k-1,n/pk[1],k,sk2);
    for(lint i=0;i<k;i++)
    {
        lint pi=pk[i],s=0ll;if(i&1) pi=(pk[k]-pi)%pk[k];
        for(lint a=1;a<=min(pk[1]-1,n);a++)
            if(a<=r) s=(s+tms(ivk[a][i+1]%pk[k],sk2[i],k))%pk[k];
            else s=(s+tms(ivk[a][i+1]%pk[k],sk1[i],k))%pk[k];
        ans=(ans+tms(pi,s,k))%pk[k];
    }
    return ans;
}
lint F(lint n,lint k) { return n?(G(n,k)+F(n/pk[1],k+1)/pk[1])%pk[k]:0; }
int main()
{
    lint p,k,n;scanf("%lld%lld%lld",&p,&k,&n);
    lint qk=k,ns=n;while(ns) ns/=p,k++;
    for(lint i=pk[0]=1;i<=k;i++) pk[i]=pk[i-1]*p;
    prelude_stirling(k,k);
    for(lint i=1;i<p;i++)
    {
        ivk[i][0]=1,ivk[i][1]=fast_pow(i,pk[k]-pk[k-1]-1,k);
        for(lint j=2;j<=k;j++) ivk[i][j]=tms(ivk[i][j-1],ivk[i][1],k);
    }
    return !printf("%lld\n",F(n,qk));
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值