视频的时空域去噪

时域去噪看上一篇文章,https://blog.csdn.net/myzhouwang/article/details/84708599,为了进一步去噪,考虑从空域进行!

根据hekaiming的GuidedFilter在灰度图上的滤波思想:平坦区域取均值,方差大的地方取自身,于是写了一下空域去噪代码:

void spannarDeNoise(Mat srcMat, Mat &dst, int radius, int maxCov)
{   
	Mat srcRef;
	Mat channel[3];
	Mat channelBlur[3];
	split(srcMat, channel);
	srcMat.convertTo(srcRef, CV_64FC1);
	Mat mean_src, mean_src2, mean_Ip, mean_II;
	boxFilter(srcRef, mean_src, CV_64FC1, Size(radius, radius));
	boxFilter(srcRef.mul(srcRef), mean_src2, CV_64FC1, Size(radius, radius));
	Mat var_I = mean_src2 - mean_src.mul(mean_src);

	boxFilter(channel[0], channelBlur[0], CV_8UC1, Size(radius, radius));
	boxFilter(channel[1], channelBlur[1], CV_8UC1, Size(radius, radius));
	boxFilter(channel[2], channelBlur[2], CV_8UC1, Size(radius, radius));

	Mat f1 = srcRef.clone();
	f1 = var_I / maxCov;

	for (int i = 0; i < srcMat.rows; i++)
	{
		for (int j = 0; j < srcMat.cols; j++)
		{
			if (f1.at<double>(i, j) > 1)
			{
				f1.at<double>(i, j) = 1;
			}
			double c1 = f1.at<double>(i, j);
			double c2 = 1 - c1;

			dst.at<Vec3b>(i, j)[0] = c1 * srcMat.at<Vec3b>(i, j)[0] + c2 * channelBlur[0].at<uchar>(i, j);
			dst.at<Vec3b>(i, j)[1] = c1 * srcMat.at<Vec3b>(i, j)[1] + c2 * channelBlur[1].at<uchar>(i, j);
			dst.at<Vec3b>(i, j)[2] = c1 * srcMat.at<Vec3b>(i, j)[2] + c2 * channelBlur[2].at<uchar>(i, j);
		}
	}
}

调用是这个函数:

void cycTemSpan()
{
	Mat deNoiseImg;
	temImg.clear();
	while (1)
	{
		Mat iniFrame;
		getFrame(iniFrame);
		if (deNoise(iniFrame, deNoiseImg))
		{   
			spannarDeNoise(deNoiseImg, deNoiseImg, 5, 5);
			showResult(deNoiseImg);
		}
		else
		{
			showResult(iniFrame);
		}
	}
}

该算法是一种保边的滤波器, 实测比中值保得更好!结果如下:

注意点:

该方法效果好,但是计算方差比较耗时,具体时间没有测,但是感官上比时域去噪慢得多,因为时域去噪只计算链各个像素之间的绝对差值和(SAD),该方法的优化选择是利用其他等效方法代替,比如窗口内最大和最小值的差值等,不能完全等效但未必不是一种可以选择的途径;

视频的保边防模糊防拖影去噪的主要思想:

空域:窗口内差值越大,                      自身权值越大,领域像素的权值越小;

时域:与前帧(参考帧)的差值越大,自身权值越小,参考帧权值越大(目的:减少与前帧的差值,缩小抖动,当然还有其他约束,具体上时域去噪的注意点);

总之,视频的噪声主要来源与时域的抖动和空域的领域差值,个人见解,非喜勿喷;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值