注:下述为在空间域进行噪声处理的一些滤波器作用简单总结,来源于冈萨雷斯的《数字图像处理》,如果错误请指出,谢谢!
去噪: 通过线性滤波器和非线性滤波器的模糊处理可以减小噪声;
一、平滑空间滤波器
1. 线性空间滤波器
- 均值滤波器:减小了图像灰度的尖锐变化,存在着不希望出现的边缘模糊的负面效应;
- 高斯低通滤波器;
- 拉普拉斯滤波器:增强图像,可以起到边缘锐化的作用,使图像更清晰;
2.非线性空间滤波器(统计排序滤波器)
- 中值滤波器: 使用非常普遍,对于一定的随机噪声,它提供了优秀的去噪能力,比小尺寸的线性平滑滤波器的模糊程度明显要低。中值滤波器对于处理脉冲噪声,也称为椒盐噪声非常有效,因为这种噪声是以黑白点叠加在图像上的;
- 最大值滤波器;
- 最小值滤波器;
二、锐化空间滤波器
锐化处理的主要目的是突出图像中的细节或者增强被模糊了的细节,用空间微分来完成。
- 基于二阶微分的图像增强-拉普拉斯算子:属于线性空间滤波器的一种,可用拉普拉斯算子进行图像锐化;
- 推演:高提升滤波;
- 基于一阶微分的图像增强-梯度法:主要用于边缘检测,Sobel算子;
拉普拉斯和梯度法的区别:
- 拉普拉斯变换可以突出图像中的小细节,梯度法可以突出边缘。
- 拉普拉斯变换作为一种二阶微分算子在图像细节增强处理方面有明显的优点,但拉普拉斯变换与梯度变换相比会产生更多的噪声。
- 梯度变换在灰度变化的区域(灰度斜坡或者阶梯)的响应要比拉普拉斯变换更为强烈,而梯度变换对噪声和小细节的响应要比拉普拉斯变换弱。
- sobel图像的边缘要比拉普拉斯图像的边缘突出许多。
三、混合空间增强法
为了达到一个满意的结果,对给定的图像增强目标需要应用多种互补的图像增强技术。
四、噪声存在下唯一的空间滤波复原
1.均值滤波器
- 算数均值滤波器:均值简单的平滑了一幅图像的局部变化,在模糊了结果的同时减少了噪声;
- 几何均值滤波器:几何均值滤波器所达到的平滑度可以和算数均值滤波器相比,但在滤波过程中会丢失更少的细节;
- 谐波均值滤波器:对于“盐”噪声效果更好,但是不适用于“胡椒”噪声,善用于处理高斯噪声那样的噪声;
- 逆谐波均值滤波器:适合减少或者消除椒盐噪声的影响,Q为正数时,消除胡椒噪声,Q为负数时,消除盐噪声。但是不能同时消除这两种噪声。
总的来说,算数均值滤波器和几何均值滤波器(尤其是后者)更适用于处理高斯或者均匀等随机噪声。谐波均值滤波器更适用于处理脉冲噪声,但是它有个缺点是必须知道噪声是暗噪声还是亮噪声,以便于选择合适的Q符号,如果Q符号选错了则会有灾难性后果。
2. 顺序统计滤波器
- 中值滤波器:对于很多种随机噪声,它都有良好的去噪能力,且在相同尺寸下比起线性平滑滤波器引起的模糊较少。对于单级或者双极脉冲噪声非常有效,它是目前为止图像处理中最常用的一种顺序统计滤波器,重复的使用中值滤波器可能会使得图像模糊化,所以应该尽可能保持所希望的处理次数;
- 最大值和最小值滤波器: 中点滤波器:对于高斯和均匀随机分布这类噪声有最好的效果;
- 修正后的阿尔法均值滤波器:在包括多种噪声的情况下非常适用,例如高斯噪声和椒盐噪声混合的情况下;
- 自适应滤波器:优于迄今为止讨论过的所有滤波器的性能,但是代价是滤波器的复杂度,例如,自适应中值滤波器;