斐波那契(黄金分割法)查找
1.黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
2.斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618
斐波那契(黄金分割法)原理
斐波那契查找原理与前两种相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示
对F(k-1)-1的理解:
1.由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1
2.类似的,每一子段也可以用相同的方式分割
3.但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
代码实现
package search;
import java.util.Arrays;
public class Fibonacci {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1,8,10,89,1000,1234};
System.out.println("index = "+fibSerch(arr,1234));
}
//因为后面我们mid=low+F(k-1)+1,需要使用到斐波那契数列
//因此需要先获取到一个斐波那契数列
//非递归方法得到一个斐波那契数列
public static int[] fib() {
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for(int i =2;i<maxSize;i++) {
f[i] = f[i-1]+f[i-2];
}
return f;
}
//斐波那契查找算法
//使用非递归方式
/**
*
* @param arr 数组
* @param key 我们需要找的关键码
* @return 找到返回相应的下标,没有就返回-1
*/
public static int fibSerch(int[] arr,int key) {
int low= 0;
int heigh = arr.length-1;
int k = 0;//便是斐波那契分割数值对应下标
int mid = 0;//存放mid
int f[] =fib();//获取到斐波那契数列
//获取到斐波那契分割数值对应下标
while(heigh >f[k] - 1) {
k++;
}
//因为f[k]的值可能大于数组长度,因此需要使用Arrays类,构造一个新的数组,并且指向a[];
//不足的部分使用0填充
int[] temp = Arrays.copyOf(arr,f[k]);
for(int i = heigh +1;i<temp.length;i++) {
temp[i] = arr[heigh];
}
//使用while循环处理找到我们的key
while(low<=heigh) {//只要这个条件满足,就可以一直找
mid = low+f[k - 1] - 1;
if(key < temp[mid]) {//说明需要继续向数组前部分(左边)查找
heigh = mid -1;
k--;
}else if(key > temp[mid]){//向右查找
low = mid +1;
//为什么k-2?
//因为后面后f[k - 2]个元素,所以可以基础拆分f[k -1] = f[k -3]+f[k - 4]
k-=2;
}else {//找到
//需要确定返回哪个下标
if(mid <= heigh) {
return mid;
}else {
return heigh;
}
}
}
return -1;
}
}