感受野( Receptive Field)


一、理论感受野

1、定义

  • 卷积神经网络输出特征图上的像素点 在原始图像上所能看到区域的大小,输出特征会受感受野区域内的像素点的影响
  • 图像的空间联系是局部的,就像人是通过一个 局部的感受野 去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些感受不同局部的神经元 综合起来就可以得到全局的信息了

2、计算公式

  • 普通(空洞)卷积感受野的计算:
    • R F l + 1 = R F l + ( k e r n e l − s i z e l + 1 − 1 ) × f e a t u r e − s t r i d e l × d i l a t i o n l + 1 R F_{l+1}=R F_{l}+\left(kernel_{-}size_{l+1}-1\right) \times {feature_{-}stride}_{l} \times dilation_{l+1} RFl+1=RFl+(kernelsizel+11)×featurestridel×dilationl+1
    • R F RF RF 表示特征感受野的大小, l l l 表示层数, f e a t u r e − s t r i d e l = ∏ i = 1 l s t r i d e i {feature_{-}stride}_{l}=\prod_{i=1}^{l} {stride}_{i} featurestridel=i=1lstridei
    • l = 0 l=0 l=0 表示输入层,输入图像的每个单元的感受野为 R F 0 = 1 RF_{0} = 1 RF0=1 f e a t u r e − s t r i d e 0 = 1 {feature_{-}stride}_{0}=1 featurestride0=1,因为每个像素只能看到自己
    • 普通卷积所有层的 dilation 为 1,空洞卷积某些层的 dilation 大于 1
    • Note:
      • 第一层卷积输出特征图像素的感受野大小等于滤波器的大小(dilation=1 时)
      • 计算感受野大小时,忽略了图像边缘的影响,即不考虑 padding 的大小
  • 一些结论:
    • 经过 Conv 1*1 不会改变感受野,ReLU/BN/dropout 等元素级操作不会改变感受野
    • 当经过 多路分支 时,按照 最大感受野分支 计算, short-cut 操作不会改变感受野
    • stride 为 1 的卷积层 线性增加 感受野,深度网络可以通过堆叠多层卷积增加感受野;stride 为2 的下采样层 乘性增加 感受野,但受限于输入分辨率不能随意增加;stride 为 1 的卷积层加在网络 后面位置,会比加在前面位置 获得更大感受野

3、实用小工具

4、作用

  • 感受野的值可以用来大致判断每一层的抽象层次:
    • 感受野越大表示其能接触到的原始图像范围就越大,也意味着可能蕴含更为 全局、语义层次更高的特征
    • 感受野越小则表示其所包含的特征越趋向于 局部和细节
  • 辅助网络的设计:
    • 一般任务:要求感受野越大越好,如图像分类中最后卷积层的感受野要大于输入图像,网络深度越深感受野越大性能越好
    • 目标检测:设置 anchor 要严格对应感受野,anchor 太大或偏离感受野都会严重影响检测性能
    • 语义分割:要求输出像素的感受野足够的大,确保做出决策时没有忽略重要信息,一般也是越深越好
  • 多个小卷积代替一个大卷积层,在 加深网络深度(增强了网络容量和复杂度)的同时减少参数的个数
    • 小卷积核(如 3 × 3 3 \times 3 3×3)通过多层叠加可取得与大卷积核(如 7 × 7 7 \times 7 7×7)同等规模的感受野
      这里写图片描述

    • 多层小卷积核和大卷积核具有同等感受野及减少参数的直观理解
      这里写图片描述


二、有效感受野及其与 anchor 的关系

1、有效感受野

  • 实际上,上述的计算是理论感受野,而特征的有效感受野是 远小于 理论感受野的
  • 且越靠近感受野 中心 的值被使用次数 越多,靠近边缘的值使用次数越少
    在这里插入图片描述

2、感受野和 anchor 的关系

  • 经典目标检测和最新目标跟踪中,都用到了 RPN(region proposal network)anchorRPN 的基础,感受野anchor 的基础
  • 目标检测中,anchor 大小及比例的设置应该跟该层特征的 有效感受野相匹配,anchor 比有效感受野大太多不好,小太多也不好
  • Equal-proportion interval principle: 感受野的大小设置为步长的 n(4) 倍
    在这里插入图片描述

三、代码实现

# -*- coding: utf-8 -*-
"""
@File      : compute_receptive_field.py
@Version   : 1.0
"""

import numpy as np

# 需指定每层的 kernel_size, stride, pad, dilation, channel_num
net_struct = {
    'vgg16': {'net': [[3, 1, 1, 1, 64], [3, 1, 1, 1, 64], [2, 2, 0, 1, 64], [3, 1, 1, 1, 128], [3, 1, 1, 1, 128],
                      [2, 2, 0, 1, 128],
                      [3, 1, 1, 1, 256], [3, 1, 1, 1, 256], [3, 1, 1, 1, 256], [2, 2, 0, 1, 256], [3, 1, 1, 1, 512],
                      [3, 1, 1, 1, 512],
                      [3, 1, 1, 1, 512], [2, 2, 0, 1, 512], [3, 1, 1, 1, 512], [3, 1, 1, 1, 512], [3, 1, 1, 1, 512],
                      [2, 2, 0, 1, 512]],
              'name': ['conv1_1', 'conv1_2', 'pool1', 'conv2_1', 'conv2_2', 'pool2', 'conv3_1', 'conv3_2', 'conv3_3',
                       'pool3', 'conv4_1', 'conv4_2', 'conv4_3', 'pool4', 'conv5_1', 'conv5_2', 'conv5_3', 'pool5']},
    'vgg16_ssd': {'net': [[3, 1, 1, 1, 64], [3, 1, 1, 1, 64], [2, 2, 0, 1, 64], [3, 1, 1, 1, 128], [3, 1, 1, 1, 128],
                        [2, 2, 0, 1, 128], [3, 1, 1, 1, 256], [3, 1, 1, 1, 256], [3, 1, 1, 1, 256], [2, 2, 0, 1, 256],
                        [3, 1, 1, 1, 512], [3, 1, 1, 1, 512], [3, 1, 1, 1, 512], [2, 2, 0, 1, 512], [3, 1, 1, 1, 512],
                        [3, 1, 1, 1, 512], [3, 1, 1, 1, 512], [3, 1, 1, 1, 512], [3, 1, 6, 6, 1024], [1, 1, 0, 1, 1024],
                        [1, 1, 0, 1, 256], [3, 2, 1, 1, 512], [1, 1, 0, 1, 128], [3, 2, 1, 1, 256], [1, 1, 0, 1, 128],
                        [3, 1, 0, 1, 256], [1, 1, 0, 1, 128], [3, 1, 0, 1, 256]],
                  'name': ['conv1_1', 'conv1_2', 'pool1', 'conv2_1', 'conv2_2', 'pool2', 'conv3_1', 'conv3_2', 'conv3_3',
                           'pool3', 'conv4_1', 'conv4_2', 'conv4_3', 'pool4', 'conv5_1', 'conv5_2', 'conv5_3', 'pool5',
                           'fc6', 'fc7', 'conv6_1', 'conv6_2', 'conv7_1', 'conv7_2', 'conv8_1', 'conv8_2', 'conv9_1',
                           'conv9_2']}
}


# 输出特征图大小的计算(down-top calculation)
def out_from_in(img_size_f, net_p, net_n, layer_len):
    total_stride = 1
    in_size = img_size_f
    for layer in range(layer_len):
        k_size, stride, pad, dilation, _ = net_p[layer]
        net_name = net_n[layer]
        if 'pool' in net_name:
            out_size = np.ceil(1.0 * (in_size + 2 * pad - dilation * (k_size - 1) - 1) / stride).astype(np.int32) + 1
        else:
            out_size = np.floor(1.0 * (in_size + 2 * pad - dilation * (k_size - 1) - 1) / stride).astype(np.int32) + 1
        in_size = out_size
        total_stride = total_stride * stride
    return out_size, total_stride


# 输出特征图上每个像素感受野的计算(top-down calculation)
def in_from_out(net_p, layer_len):
    RF = 1
    for layer in reversed(range(layer_len)):
        k_size, stride, pad, dilation, _ = net_p[layer]
        RF = ((RF - 1) * stride) + dilation * (k_size - 1) + 1
    return RF


if __name__ == '__main__':
    img_size = 300
    print("layer output sizes given image = %dx%d" % (img_size, img_size))

    for net in net_struct.keys():
        print('************net structrue name is %s**************' % net)
        for i in range(len(net_struct[net]['net'])):
            p = out_from_in(img_size, net_struct[net]['net'], net_struct[net]['name'], i + 1)
            rf = in_from_out(net_struct[net]['net'], i + 1)
            print(
                "layer_name = {:<8}  output_size = {:<4}  total_stride = {:<3}  output_channel = {:<4}  rf_size = {:<4}".format(
                    net_struct[net]['name'][i], p[0], p[1], net_struct[net]['net'][i][4], rf)
            )

# vgg16 输出结果如下
layer output sizes given image = 300x300
************net structrue name is vgg16**************
layer_name = conv1_1   output_size = 300   total_stride = 1    output_channel = 64    rf_size = 3   
layer_name = conv1_2   output_size = 300   total_stride = 1    output_channel = 64    rf_size = 5   
layer_name = pool1     output_size = 150   total_stride = 2    output_channel = 64    rf_size = 6   
layer_name = conv2_1   output_size = 150   total_stride = 2    output_channel = 128   rf_size = 10  
layer_name = conv2_2   output_size = 150   total_stride = 2    output_channel = 128   rf_size = 14  
layer_name = pool2     output_size = 75    total_stride = 4    output_channel = 128   rf_size = 16  
layer_name = conv3_1   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 24  
layer_name = conv3_2   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 32  
layer_name = conv3_3   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 40  
layer_name = pool3     output_size = 38    total_stride = 8    output_channel = 256   rf_size = 44  
layer_name = conv4_1   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 60  
layer_name = conv4_2   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 76  
layer_name = conv4_3   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 92  
layer_name = pool4     output_size = 19    total_stride = 16   output_channel = 512   rf_size = 100 
layer_name = conv5_1   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 132 
layer_name = conv5_2   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 164 
layer_name = conv5_3   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 196 
layer_name = pool5     output_size = 10    total_stride = 32   output_channel = 512   rf_size = 212 

# vgg16_ssd 输出结果如下
************net structrue name is vgg16_ssd**************
layer_name = conv1_1   output_size = 300   total_stride = 1    output_channel = 64    rf_size = 3   
layer_name = conv1_2   output_size = 300   total_stride = 1    output_channel = 64    rf_size = 5   
layer_name = pool1     output_size = 150   total_stride = 2    output_channel = 64    rf_size = 6   
layer_name = conv2_1   output_size = 150   total_stride = 2    output_channel = 128   rf_size = 10  
layer_name = conv2_2   output_size = 150   total_stride = 2    output_channel = 128   rf_size = 14  
layer_name = pool2     output_size = 75    total_stride = 4    output_channel = 128   rf_size = 16  
layer_name = conv3_1   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 24  
layer_name = conv3_2   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 32  
layer_name = conv3_3   output_size = 75    total_stride = 4    output_channel = 256   rf_size = 40  
layer_name = pool3     output_size = 38    total_stride = 8    output_channel = 256   rf_size = 44  
layer_name = conv4_1   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 60  
layer_name = conv4_2   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 76  
layer_name = conv4_3   output_size = 38    total_stride = 8    output_channel = 512   rf_size = 92  
layer_name = pool4     output_size = 19    total_stride = 16   output_channel = 512   rf_size = 100 
layer_name = conv5_1   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 132 
layer_name = conv5_2   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 164 
layer_name = conv5_3   output_size = 19    total_stride = 16   output_channel = 512   rf_size = 196 
layer_name = pool5     output_size = 19    total_stride = 16   output_channel = 512   rf_size = 228 
layer_name = fc6       output_size = 19    total_stride = 16   output_channel = 1024  rf_size = 420 
layer_name = fc7       output_size = 19    total_stride = 16   output_channel = 1024  rf_size = 420 
layer_name = conv6_1   output_size = 19    total_stride = 16   output_channel = 256   rf_size = 420 
layer_name = conv6_2   output_size = 10    total_stride = 32   output_channel = 512   rf_size = 452 
layer_name = conv7_1   output_size = 10    total_stride = 32   output_channel = 128   rf_size = 452 
layer_name = conv7_2   output_size = 5     total_stride = 64   output_channel = 256   rf_size = 516 
layer_name = conv8_1   output_size = 5     total_stride = 64   output_channel = 128   rf_size = 516 
layer_name = conv8_2   output_size = 3     total_stride = 64   output_channel = 256   rf_size = 644 
layer_name = conv9_1   output_size = 3     total_stride = 64   output_channel = 128   rf_size = 644 
layer_name = conv9_2   output_size = 1     total_stride = 64   output_channel = 256   rf_size = 772 

四、参考资料

1、关于感受野的总结
2、卷积神经网络的感受野
3、特征图尺寸和感受野计算详解
4、A guide to receptive field arithmetic for Convolutional Neural Networks
5、Convolutional Pose Machines
6、S3FD: Single Shot Scale-invariant Face Detector

  • 17
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值