目录
〇,幻方
幻方一般指平面幻方,在一个n*n的表格中填入1,2,3,...,n^2,使得每一行每一列以及2条对角线的和都是相等的。
一,幻方的轮胎模型
把一个n*n的表格平面,上下相接,左右相接,变成一个轮胎。
二,奇数阶幻方的构造法
1,罗伯构造法
这个方法构造出的五阶幻方:
2,罗伯构造法的推广
从1开始,往右上移动的时候,可以每一次往右移动一列往上移动m行,只要(m,n)=1即可。
如m=2:
还有2点:
3,巴舍构造法(平移补空法)
我理解本质上和罗伯构造法是一样的,只是表述方式和操作方式不一样。
准确的说,罗伯构造法的推广能构造出的幻方,应该是覆盖了巴舍构造法能构造出的幻方的。
4,轮换叠加构造法
取x, y 使得x, y, x+y 都和n互质,构造x左移方阵A和y右移方阵B:第一行写1到n的数字,后面每一行都是上一行的平移。
比如x=2, y=2, n=5
第一行的限制:如果x=1,则A右上角必须是中位数,如果y=1,则B左上角必须是中位数。
C是一个固定的方阵,所有格子都是1,
那么,n(B-C)+A就是幻方。
三,偶数阶幻方
1,n=4k的构造法
(1)按顺序填入数字
(2)把整个矩阵分成k^2个4*4的小矩阵,把每个小矩阵中的这8个位置进行调整
调整方法是把x换成n^2+1-x
四,幻立方
1,幻立方
把1,2,3,...,n^3填入一个n*n*n的三维表格,使得n^2个列,n^2个行,n^2个竖直列,以及4条对角线上数字之和都相等。
显然,这个和是(n^3+1)*n/2
2,完美幻立方
如果一个幻立方满足,3n个截面上的2条对角线的数字之和也都等于(n^3+1)*n/2,那么称之为完美幻立方。
4阶完美幻立方:
5阶完美幻立方:
五,OJ实战
HDU 1998 奇数阶魔方
题目:
Description
一个 n 阶方阵的元素是1,2,...,n^2,它的每行,每列和2条对角线上元素的和相等,这样 的方阵叫魔方。n为奇数时我们有1种构造方法,叫做“右上方” ,例如下面给出n=3,5,7时 的魔方.
3
8 1 6
3 5 7
4 9 2
5
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
7
30 39 48 1 10 19 28
38 47 7 9 18 27 29
46 6 8 17 26 35 37
5 14 16 25 34 36 45
13 15 24 33 42 44 4
21 23 32 41 43 3 12
22 31 40 49 2 11 20
第1行中间的数总是1,最后1行中间的数是n^2,他的右边是2,从这三个魔方,你可看出“右上方”是何意。
Input
包含多组数据,首先输入T,表示有T组数据.每组数据1行给出n(3<=n<=19)是奇数。
Output
对于每组数据,输出n阶魔方,每个数占4格,右对齐
Sample Input
2
3
5
Sample Output
8 1 6
3 5 7
4 9 2
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
这个题目规定死了填的方式,直接写出来就是的了。
用了一个小技巧,不需要记录区分哪些格子已经写过了,哪些没写过。
什么时候会遇到右上方已经写了数的情况,直接根据num就可以算出来
因为我对幻方做过一点研究,所以应该算是写的比较简洁的。
代码:
#include<iostream>
#include<iomanip>
using namespace std;
int matrix[20][20];
int main()
{
int t, n;
cin >> t;
while (t--)
{
cin >> n;
int number = 1, line = 1, column = n / 2 + 1;
while (number<=n*n)
{
matrix[line][column] = number++;
if (number%n == 1)line++;
else
{
line = (line + n - 2) % n + 1;
column = column%n + 1;
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)cout << setw(4) << matrix[i][j];
cout << endl;
}
}
return 0;
}
HDU 2183 奇数阶魔方(II)
题目:
Description
1 ,2, 3, …,n^2 这n^2 个数 排成n*n 方阵 每行每列每条对角线上的n个数字之和s相等,
s=n(n*n+1)/2,奇数阶魔方可由菱形转变成
n=3,5时如下
3
*********1
******4******2
***7*****5******3
******8******6
*********9
4 9 2
3 5 7
8 1 6
5
*******************1
***************6*******2
**********11*******7*******3
******16*******12*******8*******4
**21******17******13*******9*******5
******22*******18*****14******10
**********23*******19******15
**************24******20
******************25
11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15
Input
输入奇数 3<=n<=21. n=0退出
Output
输出n阶魔方,每个数字占4列,右对齐
Sample Input
7
0
Sample Output
22 47 16 41 10 35 4
5 23 48 17 42 11 29
30 6 24 49 18 36 12
13 31 7 25 43 19 37
38 14 32 1 26 44 20
21 39 8 33 2 27 45
46 15 40 9 34 3 28
代码:
#include<iostream>
#include<iomanip>
using namespace std;
int matrix[22][22];
int main()
{
int n;
while (cin >> n)
{
if (n == 0)break;
int number = 1, line = n / 2 + 2, column = n / 2 + 1;
while (number<=n*n)
{
matrix[line][column] = number++;
if (number%n == 1)line = (line + 1) % n + 1;
else
{
line = line % n + 1;
column = column % n + 1;
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)cout << setw(4) << matrix[i][j];
cout << endl;
}
}
return 0;
}
力扣 840. 矩阵中的幻方
3 x 3
的幻方是一个填充有 从 1
到 9
的不同数字的 3 x 3
矩阵,其中每行,每列以及两条对角线上的各数之和都相等。
给定一个由整数组成的row x col
的 grid
,其中有多少个 3 × 3
的 “幻方” 子矩阵?(每个子矩阵都是连续的)。
示例 1:
输入: grid = [[4,3,8,4],[9,5,1,9],[2,7,6,2] 输出: 1 解释: 下面的子矩阵是一个 3 x 3 的幻方:
而这一个不是:
总的来说,在本示例所给定的矩阵中只有一个 3 x 3 的幻方子矩阵。
示例 2:
输出: grid = [[8]] 输入: 0
提示:
row == grid.length
col == grid[i].length
1 <= row, col <= 10
0 <= grid[i][j] <= 15
class Solution {
public:
int numMagicSquaresInside(vector<vector<int>>& grid) {
int ans = 0;
for (int i = 0; i+2 < grid.size(); i++)for (int j = 0; j+2 < grid[0].size(); j++) {
int s = 15;
bool flag = true;
if (s != grid[i][j] + grid[i + 1][j + 1] + grid[i + 2][j + 2])flag = false;
if (s != grid[i + 2][j] + grid[i + 1][j + 1] + grid[i][j + 2])flag = false;
if (s != grid[i][j] + grid[i][j + 1] + grid[i][j + 2])flag = false;
if (s != grid[i + 1][j] + grid[i + 1][j + 1] + grid[i + 1][j + 2])flag = false;
if (s != grid[i + 2][j] + grid[i + 2][j + 1] + grid[i + 2][j + 2])flag = false;
if (s != grid[i][j] + grid[i + 1][j] + grid[i + 2][j])flag = false;
if (s != grid[i][j + 1] + grid[i + 1][j + 1] + grid[i + 2][j + 1])flag = false;
if (s != grid[i][j + 2] + grid[i + 1][j + 2] + grid[i + 2][j + 2])flag = false;
map<int, int>m;
for (int x = i; x <= i + 2; x++)for (int y = j; y <= j + 2; y++)m[grid[x][y]]++;
for(int z=1;z<=9;z++)if(m[z]==0)flag = false;
ans += flag;
}
return ans;
}
};
六,蜂窝幻方
如果不知道要填的数字有哪些,也不知道列和,那最后就变成:
如果限制所有的数都是正整数,那么s=56或68