线性代数

目录

线性代数(1)矩阵和行列式

1,转置

2,迹

3,行列式的性质

4,拉普拉斯定理

5,等价矩阵

6,秩

7,标准形

8,初等矩阵

9,逆矩阵

10,伴随矩阵

线性代数(2)线性方程组

1,克拉默法则

2,增广矩阵

3,有解的条件

4,基础解系

5,非齐次方程的通解

线性代数(3)题目

线性代数(4)特征、正交、秩

线性代数(5)向量空间

线性代数(6)相似、对角化

线性代数(7)二次型


线性代数(1)矩阵、行列式、秩

1,转置

转置即行列交换

(A^T)^T=A,(A+B)^T=A^T+B^T,(AB)^T=B^TA^T

2,迹

主对角线元素之和

性质:

tᵣ(AB)= tᵣ(BA)

3,行列式的性质

(1)交换两行,行列式只改变符号

(2)若行列式某一行可以写成2个行向量之和,则行列式可以写成对应的2个行列式之和。

(3)|AB| = |A| |B|

4,拉普拉斯定理

任取D的k行,由这k行构成的所有k阶子式与对应代数余子式乘积之和为|D|

5,等价矩阵

若A经过有限次初等变换后化为B,则称A和B等价,记为A~B

性质:

(1)A~A(2)A~B则B~A(3)A~B,B~C,则A~C

6,秩

矩阵的秩是矩阵的非0子式的最高阶数

性质:

(1)若A~B,则R(A)=R(B)

(2)若有1个r阶非0子式Dr,包含Dr的任意r+1阶子式为0,则R(A)=r

(3)n阶方阵A,A的行列式不等于0等价于R(A)=n,A的行列式等于0等价于R(A)<n 

(4)R(A^TA)=R(A)

7,标准形

任何非0矩阵都可以用初等变换化为\begin{pmatrix} E_r &0 \\ 0 & 0 \end{pmatrix},称之为标准形

其中r是矩阵的秩

8,初等矩阵

由E经过1次初等变换后得到的矩阵叫初等矩阵

9,逆矩阵

若AB=E,则称AB互为逆矩阵,记为B=A⁻¹

性质:

(1)A可逆等价于A的行列式不为0

(2)|A⁻¹| = |A|⁻¹,(A⁻¹)⁻¹=A

(3)\lambda \neq 0,(\lambda A)^{-1}=\frac{1}{\lambda}A^{-1}

(4)若A、B可逆,则(AB)⁻¹=B⁻¹A⁻¹

10,伴随矩阵

伴随矩阵A*是A的代数余子式的方阵的转置

性质:

(1)A*A=|A|E,|A*|等于|A|的n-1次方

(2)若|A|不为0,则

A⁻¹=A* / |A|,(A⁻¹)* = (A*)⁻¹ = A / |A|, (A*)* =|A|^{n-2}A

(3)(AB)* = B*A*

线性代数(2)线性方程组

1,克拉默法则

(1)非齐次方程组若系数行列式D不等于0,则有唯一解

(2)若齐次方程组有非0解,则D=0

2,增广矩阵

对于m个n元方程组成的方程组,Ax=b的增广矩阵B=(A,b)

3,有解的条件

齐次方程组有非0解,等价于R(A)< n

非齐次方程组有解,等价于R(A)=R(B)

PS:在B经过初等行变换化成阶梯形时,R(A)和 R(B)同时求出来了

4,基础解系

(1)若齐次有非0解,则它有基础解系,且所含的解向量个数为n-R(A)

(2)齐次的任意n-R(A)个线性无关的解向量都构成基础解系

5,非齐次方程的通解

非齐次方程的通解 = 非齐次方程的特解 + 对应齐次方程的通解

线性代数(3)题目

1,A ³=2E , B=A²-2A+E,证明B⁻¹存在,并求B⁻¹
解: B=( A-E)²
(A-E)( A²+A+E)=A³-E=2E-E=E
∴( A-E)²( A²+A+E)²=E,即B( A²+A+E)²=E
∴B⁻¹=( A²+A+E)²=3A²+4A+5E

2,证明不存在A,B,AB-BA=E
解:tᵣ(AB-BA)=tᵣ(AB)-tᵣ(BA)=0
tᵣ(E)=n
∴AB-BA≠E
3,A,B为n阶方阵,AAᵀ=AᵀA=E,BBᵀ=BᵀB=E,|A|+|B|=0,求IA+BI
解:AAᵀ=E,BBᵀ=E
∴|A|=±1,|B|=±1
∴|A|=1,|B|=-1, 或|A|=-1,|B|=1
∴|A+B|=|ABᵀB+AAᵀB|=|A(Bᵀ+Aᵀ)B|=|A||Bᵀ+Aᵀ||B|
∴|A+B|=-|Bᵀ+Aᵀ|=-|(A+B)ᵀ|=-|A+BI
∴|A+BI=0
4,证明若AᵀA=0, 则A=0
解:则AᵀA的迹为\sum_i\sum_j a_{ij}^2=0
∴∀i,j, aᵢⱼ=0
即A=0

5,设\beta可由\alpha _1,\alpha _2,...,\alpha _m线性表出,且表达式唯一,证明\alpha _1,\alpha _2,...,\alpha _m线性无关。

6,求A^100,其中

A=\begin{pmatrix} 7 & -12& 6\\ 10 & -19 &10 \\ 12& -24 &13 \end{pmatrix}

 7,

8,证明若A、B为n阶矩阵,AB=O,则R(A)+R(B)<= n

 9,证明若n阶实矩阵A有A=A² ,则R(A)+R(A-E)=n

解:A(A-E)=O,故R(A)+R(A-E)<=n(用了上面的结论)

10,

 

11,

 

12,

 

解:

13,求A^n(n>2),其中

A=\begin{pmatrix} \lambda & 1&0 \\ 0& \lambda& 1\\ 0 & 0& \lambda \end{pmatrix}

解:

A=\lambda E+B

B=\begin{pmatrix} 0& 1&0 \\ 0& 0& 1\\ 0 & 0& 0\end{pmatrix}

B^3=O

所以,A^n=(\lambda E+B)^n=\frac{n(n-1)}{2}\lambda^{n-2}B^2+n\textrm{}\lambda^{n-1}B+\lambda^n

\lambda^{n-2}\begin{pmatrix} \lambda^{2}& n\lambda & \frac{n(n-1)}{2}\\ 0 & \lambda^{2}& n\lambda \\ 0 & 0 & \lambda^{2} \end{pmatrix}

14,

 

解:

15,

 

解:

线性代数(4)特征、正交

1,

2,

4,正交矩阵

(1)若A是方阵,A^TA=E,即A^T=A^{-1},则称A为正交矩阵

(2)A为正交矩阵等价于,A的行(列)向量组是正交的单位向量组

(3)正交矩阵的行列式是正负1

(4)若A、B为正交矩阵,则A^T,A^{-1},A^*,AB也是正交矩阵

特征值、特征向量

线性代数(5)向量空间

线性代数(6)相似、对角化

1.A,B为n阶距阵,若B=P⁻¹AP,则称A,B相似
2.相似矩阵的性质:①反身性,对称性,传递性
   ②若|A|~B则|A|=|B|
   ③P⁻¹(A₁A₂)P=(P⁻¹A₁P)(P⁻¹A₂P)
   ④若A~B则Aᵐ ~ Bᵐ
   ⑤若A~B,  A、B可逆,则A⁻¹ ~ B⁻¹
3.若A~B, 则A、B有相同的特征多项式、特征值。
4.若A与对角阵B相似,则B对角线上的n个数是A的n个特征值
5.可对角化
 ①若P⁻¹AP为对角阵,即A与对角阵相似,则可称A对角化。
 ②A可对角化⇔A有n个线性无关的特征向量。
6.复数域上∀A,∃B是上三角矩阵,且A与B相似,且B的主对角线上元素为a的特征值
7.哈密顿-凯莱定理
 设f(λ)=|λE-A|是A的特征多项式,则f(A)=O矩阵。
8.若n阶方阵A有n个不同的特征值,则A可对角化。
9.实对称矩阵
  ①特征值都是实数,特征向量可取实向量。

  ②对应于不同特征值的特征向量是正相交的。

  ③一定可对角化,表示成P⁻¹AP,其中P是正交矩阵,A是特征值组成的对角阵

  ④可以表示成P^TAP

线性代数(7)二次型

1,二次型:如果一个多项式的每一项都是二次,那么称它为二次型。

可以表示成f(x_1,x_2,...x_n)=X^TAX,其中A是对称矩阵。

一个n元二次型f,和一个n阶对称矩阵A是对应的。

2,正定和负定

(1)如果对于任何非零列向量X,都有,则称f为正定二次型,称矩阵A为正定矩阵。
(2)如果对于任何非零列向量X,都有,则称f为半正定二次型,称A为半正定矩阵。
(3)如果对于任何非零列向量X,都有,则称f为负定二次型,称A为负定矩阵。
(4)如果对于任何非零列量X,都有,则称f为半负定二次型,称A为半负定矩阵。
(5)其它的实二次型称为不定二次型,其矩阵称为不定矩阵。

3,二次型和特征值的关系

实对称矩阵可以表示成A = P^TBP,  所以f(x_1,x_2,...x_n)=X^TAX=X^TP^TBPX=(PX)^TBPX

所有特征值都是正数的矩阵被称为正定,所有特征值都是非 负数的矩阵被称为半正定,所有特征值都是非负数的矩阵被称为半正定,所有特征值都是非 负数的矩阵被称为半正定。

4,负惯指数:矩阵的负的特征值个数

     对于n阶实二次型A,A负定⇔A的负惯指数为n
5,若A可逆,则AᵀA正定。

6,若A正定,则A⁻¹正定,Aᵀ正定, A*正定

  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值