各种拉格朗日函数

文章介绍了拉格朗日函数的三种形式:基本的拉格朗日函数用于求解带约束的极值问题;部分拉格朗日函数在处理凸函数优化时的角色,特别是寻找鞍点;以及增广拉格朗日函数在解决更复杂约束优化问题中的动态理解与应用,通常与罚函数法和增广拉格朗日方法相关联。
摘要由CSDN通过智能技术生成

目录

一,拉格朗日函数

二,部分拉格朗日函数

三,增广拉格朗日函数


一,拉格朗日函数

以三元函数为例:

求f(x,y,z)的极值,s.t.g(x,y,z)=0

拉格朗日函数L(x,y,z,a) = f(x,y,z) + a * g(x,y,z)

在极值点处一定有,L对4个变量的一阶偏导为0,从而求出4个变量。

PS:

要求的是拉格朗日函数的驻点,不一定是极值点,也可能是鞍点

二,部分拉格朗日函数

一阶原始对偶为例:

求:min f(x) + g(Ax),其中f和g 是凸函数。

部分拉格朗日函数:h(x,z)=f(x)-g^*(z)+z^TAx

PS:

要求的是部分拉格朗日函数的鞍点,但是实际上我们不用求导来求,而是迭代寻找鞍点的近似点。

三,增广拉格朗日函数

求:

 增广拉格朗日函数:

PS:

增广拉格朗日函数的求解目标要动态理解,参考罚函数法、增广拉格朗日函数法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值