拉格郎日函数

1:拉格郎日函数
对于问题:
m i n   f 0 ( x ) min \ f_0(x) min f0(x)
f i ( x ) ≤ 0   i = 1 , 2... , n f_i(x) \leq 0 \ i=1,2...,n fi(x)0 i=1,2...,n
h i ( x ) = 0   i = 1 , 2... , n h_i(x)= 0 \ i=1,2...,n hi(x)=0 i=1,2...,n
注意这里没有指定函数是凸函数
对应的拉格郎日函数写为
L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 n λ i f i ( x ) + ∑ i = 1 n v i h i ( x )   , λ ∈ R n , v ∈ R n L(x,\lambda,v)=f_0(x)+\displaystyle \sum_{i=1}^n \lambda_i f_i(x) + \displaystyle \sum_{i=1}^n v_i h_i(x) \ ,\lambda \in R^n,v \in R^n L(x,λ,v)=f0(x)+i=1nλifi(x)+i=1nvihi(x) ,λRn,vRn

2:拉格郎日对偶函数:
g ( λ , v ) = m i n L ( x , λ , v ) g(\lambda,v)=min L(x,\lambda,v) g(λ,v)=minL(x,λ,v)
表示在给定x的情况下的关于 λ , v \lambda,v λ,v的最小值函数
性质1: g ( λ , v ) g(\lambda,v) g(λ,v) 是凹函数
性质2: ∀ λ ≥ 0 , 对 于 ∀ v , 有 g ( λ , v ) ≤ p ∗ , p ∗ 是 原 拉 格 郎 日 函 数 的 最 优 解 \forall \lambda \geq 0 ,对于\forall v,有g(\lambda,v) \leq p^*,p^*是原拉格郎日函数的最优解 λ0,v,g(λ,v)p,p

3:对偶问题:
{ m a x   g ( λ , v ) = max ⁡ min ⁡ L ( x , λ , v ) λ ≥ 0 \begin{cases} max \ g(\lambda,v)=\max \min L(x,\lambda,v) \\ \lambda \geq 0 \end{cases} {max g(λ,v)=maxminL(x,λ,v)λ0
是凸问题,因为最大化凹函数等于最小化凸函数,自变量 λ 满 足 凸 集 的 定 义 \lambda 满足凸集的定义 λ
令对偶问题最优解为 d ∗ d^* d
原问题最优解为 p ∗ p^* p
当满足 d ∗ = p ∗ d^*=p^* d=p时,称为强对偶, d ∗ ≤ p ∗ d^* \leq p^* dp为弱对偶

4:鞍点:
对于任意函数 f ( w , z ) f(w,z) f(w,z),一定有下列不等式成立:也叫弱对偶关系
max ⁡ z min ⁡ w   f ( w , z ) ≤ min ⁡ w max ⁡ z   f ( w , z ) \displaystyle \max_z \min_w \ f(w,z) \leq \displaystyle \min_w \max_z\ f(w,z) zmaxwmin f(w,z)wminzmax f(w,z)
证明:
下列不等式恒成立:
min ⁡ w   f ( w , z ) ≤   f ( w , z ) : w 作 为 自 变 量 \displaystyle \min_w \ f(w,z) \leq \ f(w,z) \quad : w作为自变量 wmin f(w,z) f(w,z):w
  f ( w , z ) ≤ max ⁡ z   f ( w , z ) : z 作 为 自 变 量 \displaystyle \ f(w,z) \leq \max_z \ f(w,z) \quad : z作为自变量  f(w,z)zmax f(w,z):z
所以有:
min ⁡ w   f ( w , z ) ≤ max ⁡ z   f ( w , z ) \displaystyle \min_w \ f(w,z) \leq \max_z \ f(w,z) wmin f(w,z)zmax f(w,z)

min ⁡ w   f ( w , z ) = α ( z ) : α ( z ) 是 关 于 z 的 函 数 \displaystyle \min_w \ f(w,z)=\alpha(z) \quad :\alpha(z)是关于z的函数 wmin f(w,z)=α(z):α(z)z
max ⁡ z   f ( w , z ) = β ( w ) : β ( w ) 是 关 于 w 的 函 数 \displaystyle \max_z \ f(w,z)=\beta(w) \quad :\beta(w)是关于w的函数 zmax f(w,z)=β(w):β(w)w
所以有下列不等式恒成立
α ( z ) ≤ β ( w ) \alpha(z) \leq \beta(w) α(z)β(w)
也就有:
max ⁡ z α ( z ) ≤ min ⁡ w β ( w ) \displaystyle \max_z \alpha(z) \leq \displaystyle \min_w \beta(w) zmaxα(z)wminβ(w)
max ⁡ z min ⁡ w   f ( w , z ) ≤ min ⁡ w max ⁡ z   f ( w , z ) \displaystyle \max_z \min_w \ f(w,z) \leq \displaystyle \min_w \max_z\ f(w,z) zmaxwmin f(w,z)wminzmax f(w,z)
证明完毕

如果等式成立,并且 w , z w,z w,z取值相同的点称作鞍点
对于原问题:
m a x   L ( x , λ , v ) = { ∞ :   当 λ < 0 L ( x , λ , v ) :   当 λ ≥ 0 max \ L(x,\lambda,v)= \begin{cases} \infty :\ 当 \lambda < 0 \\ L(x,\lambda,v) :\ 当 \lambda \geq 0 \end{cases} max L(x,λ,v)={: λ<0L(x,λ,v): λ0
所以有下列关系成立
L ( x , λ , v ) = { min ⁡ max ⁡ L ( x , λ , v ) λ ≥ 0 L(x,\lambda,v) = \begin{cases} \min \max L(x,\lambda,v) \\ \lambda \geq 0 \end{cases} L(x,λ,v)={minmaxL(x,λ,v)λ0

鞍点定理:
若 w ∗ , z ∗ 是 函 数 f ( w , z ) 的 鞍 点 , 则 强 对 偶 关 系 存 在 p ∗ = d ∗ , 并 且 该 点 是 若w^*,z^*是函数f(w,z)的鞍点,则强对偶关系存在p^*=d^*,并且该点是 w,zf(w,z)p=d,
原 问 题 和 对 偶 问 题 的 最 优 解 原问题和对偶问题的最优解

5:当原问题是凸问题时,基本上满足slater 条件 ,从而满足 d ∗ = p ∗ d^*=p^* d=p

  • slater 条件是充分条件

6:KKT条件: 令 : x ∗ , λ ∗ , v ∗ 令:x^*, \lambda^*,v^* x,λ,v是原问题最优解,如果所有函数一阶可微,
并且满足 d ∗ = p ∗ , 一 定 会 有 下 列 条 件 成 立 d^*=p^*,一定会有下列条件成立 d=p,
{ f i ( x ∗ ) ≤ 0 h i ( x ∗ ) = 0 前 两 条 保 证 原 问 题 满 足 约 束 λ ∗ ≥ 0 保 证 对 偶 问 题 满 足 约 束 λ i f i ( x ∗ ) = 0 互 补 松 弛 条 件 ∇ f 0 ( x ∗ ) + ∑ i = 1 n λ i ∇ f i ( x ∗ ) + ∑ i = 1 n v i ∇ h i ( x ∗ ) = 0 满 足 凸 函 数 性 质   \begin{cases} f_i(x^*) \leq 0 \\ h_i(x^*) = 0 \quad 前两条保证原问题满足约束\\ \lambda^* \geq 0 \quad 保证对偶问题满足约束\\ \lambda_i f_i(x^*) =0 \quad 互补松弛条件\\ \nabla f_0(x^*)+\displaystyle \sum_{i=1}^n \lambda_i \nabla f_i(x^*) + \displaystyle \sum_{i=1}^n v_i \nabla h_i(x^*)=0 \quad 满足凸函数性质\ \end{cases} fi(x)0hi(x)=0λ0λifi(x)=0f0(x)+i=1nλifi(x)+i=1nvihi(x)=0 

必要性证明:已知条件: 所 有 函 数 可 微 , d ∗ = p ∗ , x ∗ , λ ∗ , v ∗ 是 原 问 题 最 优 解 所有函数可微, d^*=p^*,x^*, \lambda^*,v^*是原问题最优解 ,d=p,x,λ,v
必然有
{ f i ( x ∗ ) ≤ 0 h i ( x ∗ ) = 0 λ ∗ ≥ 0 \begin{cases} f_i(x^*) \leq 0 \\ h_i(x^*) = 0 \\ \lambda^* \geq 0 \\ \end{cases} fi(x)0hi(x)=0λ0
前两条表示原问题有可行解,最后一条表示对偶问题有可行解
又因为 d ∗ = p ∗ d^*=p^* d=p
所以有: f 0 ( x ∗ ) = g ( λ ∗ , v ∗ ) f_0(x^*)=g(\lambda^*,v^*) f0(x)=g(λ,v)
= m i n   L ( x , λ ∗ , v ∗ ) =min \ L(x,\lambda^*,v^*) =min L(x,λ,v)
= m i n   ( f 0 ( x ) + ∑ i = 1 n λ i ∗ f i ( x ) + ∑ i = 1 n v i ∗ h i ( x ) ) =min \ (f_0(x)+\displaystyle \sum_{i=1}^n \lambda_i^* f_i(x) + \displaystyle \sum_{i=1}^n v_i^* h_i(x)) =min (f0(x)+i=1nλifi(x)+i=1nvihi(x))
≤ f 0 ( x ∗ ) + ∑ i = 1 n λ i ∗ f i ( x ∗ ) + ∑ i = 1 n v i ∗ h i ( x ∗ ) \leq f_0(x^*)+\displaystyle \sum_{i=1}^n \lambda_i^* f_i(x^*) + \displaystyle \sum_{i=1}^n v_i^* h_i(x^*) f0(x)+i=1nλifi(x)+i=1nvihi(x)
= f 0 ( x ∗ ) = f_0(x^*) =f0(x)
所以 λ i ∗ f i ( x ∗ ) = 0 成 立 \lambda_i^* f_i(x^*)=0成立 λifi(x)=0
又因为所有函数可微,那么我们知道函数的极值点是导数为0的点,所以会满足
∇ f 0 ( x ∗ ) + ∑ i = 1 n λ i ∗ ∇ f i ( x ∗ ) + ∑ i = 1 n v i ∗ ∇ h i ( x ∗ ) = 0 \nabla f_0(x^*)+\displaystyle \sum_{i=1}^n \lambda_i^* \nabla f_i(x^*) + \displaystyle \sum_{i=1}^n v_i^* \nabla h_i(x^*)=0 f0(x)+i=1nλifi(x)+i=1nvihi(x)=0
必要性证明完毕

6:充分性:
令 : x ∗ , λ ∗ , v ∗ 原 问 题 最 优 解 , 如 果 所 有 函 数 一 阶 可 微 , 令:x^*, \lambda^*,v^*原问题最优解,如果所有函数一阶可微, x,λ,v
并 且 所 有 函 数 都 是 凸 函 数 , 则 K K T 条 件 是 d ∗ = p ∗ 的 充 分 必 要 条 件 并且所有函数都是凸函数,则KKT条件是d^*=p^*的充分必要条件 KKTd=p

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值