四种经典的拉格朗日函数(Augmented Lagrangian Function)

1 The essentially quadratic augmented Lagrangian function

ϕ : R → R \phi:\mathbb R\rightarrow \mathbb R ϕ:RR 是二次连续可微的并且严格凸函数,满足 ϕ ( 0 ) = 0 , ϕ ′ ( 0 ) = 0 \phi(0)=0,\phi\prime(0)=0 ϕ(0)=0,ϕ(0)=0 定义:
P ( s , t ) = { t s + ϕ ( s ) i f    t + ϕ ′ ( s ) ≥ 0 min ⁡ τ ∈ R [ t τ + ϕ ( τ ) ] o t h e r w i s e P(s,t)=\left \{ \begin{aligned} &ts+\phi(s) &&if\; t+\phi\prime(s)\ge 0\\ &\min_{\tau\in \mathbb R} [t\tau+\phi(\tau)] &&otherwise\end{aligned} \right. P(s,t)=ts+ϕ(s)τRmin[tτ+ϕ(τ)]ift+ϕ(s)0otherwise

二次增广拉格朗日函数定义为:
L 1 ( x , λ , c ) = f ( x ) + 1 c P ( c g i ( x ) , λ i ) L_1(x,\lambda,c)=f(x)+\frac{1}{c}P(cg_i(x),\lambda_i) L1(x,λ,c)=f(x)+c1P(cgi(x),λi)

其中 c > 0 , x ∈ X , λ = ( λ 1 , . . . , λ m ) T ≥ 0 c>0,x\in X,\lambda=(\lambda_1,...,\lambda_m)^T\ge0 c>0,xX,λ=(λ1,...,λm)T0

2 The exponential-type augmented Lagrangian

ψ : R → R \psi:\mathbb R\rightarrow \mathbb R ψ:RR 是二次可微的并且严格增函数,满足 ψ ( 0 ) = 0 \psi(0)=0 ψ(0)=0 问题是:
min ⁡    f ( x ) s u b j e c t    t o    ( 1 / c ) ψ ( c g i ( x ) ) ≤ 0 , i = 1 , . . . , m x ∈ X \begin{aligned} &\min\;f(x)\\ &subject\;to\;&&(1/c)\psi(cg_i(x))\le 0,i=1,...,m\\ &&&x\in X \end{aligned} minf(x)subjectto(1/c)ψ(cgi(x))0,i=1,...,mxX

其中 c > 0 c>0 c>0 是一个参数

上述问题(P)的拉格朗日函数可以写为以下形式:
L 2 ( x , λ , c ) = f ( x ) + 1 c ∑ i = 1 m λ i ψ ( c g i ( x ) ) , x ∈ X , λ ≥ 0 L_2(x,\lambda,c)=f(x)+\frac{1}{c}\sum\limits_{i=1}^m\lambda_i\psi(cg_i(x)),\quad x\in X,\lambda\ge0 L2(x,λ,c)=f(x)+c1i=1mλiψ(cgi(x)),xX,λ0

3 The modified barrier augmented Lagrangian

φ : ( − ∞ , 1 ) → R \varphi:(-\infty,1)\rightarrow \mathbb R φ:(,1)R 是二次可微分的并且严格增函数,满足 φ ( 0 ) = 0 \varphi(0)=0 φ(0)=0

我们可以把问题重新表示通过使用 φ \varphi φ。令 Ω c = x ∈ X ∣ c g i ( x ) < 1 , i = 1 , . . . , m \Omega_c={x\in X|cg_i(x)<1,i=1,...,m} Ωc=xXcgi(x)<1,i=1,...,m 定义 The modified barrier augmented Lagrangian 如下:
L 3 ( x , λ , c ) = { f ( x ) + 1 c ∑ i = 1 m λ i φ ( c g i ( x ) ) , x ∈ Ω c ∞ , x ∈ X \ Ω x L_3(x,\lambda,c)=\left \{\begin{aligned}&f(x)+\frac{1}{c}\sum\limits_{i=1}^m\lambda_i\varphi(cg_i(x)),&&x\in \Omega_c\\&\infty,&&x\in X\verb|\|\Omega_x\end{aligned}\right. L3(x,λ,c)=f(x)+c1i=1mλiφ(cgi(x)),,xΩcxX\Ωx

其中 c > 0 , λ ≥ 0 c>0,\lambda\ge 0 c>0,λ0

4 Introducing the penalty function

ξ : R → R \xi:\mathbb R\rightarrow \mathbb R ξ:RR 是一个二次可微分函数,对于所有的 t ≤ 0 t\le0 t0 满足 ξ ( t ) = 0 \xi(t)=0 ξ(t)=0,对于所有的 t > 0 t>0 t>0 满足 ξ ( t ) > 0 \xi(t)>0 ξ(t)>0 对于一下问题:
min ⁡      f ( x ) + ( 1 / c ) ∑ i = 1 m ξ ( c g i ( x ) ) s u b j e c t    t o    ( 1 / c ) ψ ( c g i ( x ) ) ≤ 0 ,    i = 1 , . . . , m , x ∈ X \begin{aligned} &\min\;\; f(x)+(1/c)\sum\limits_{i=1}^m\xi(cg_i(x))\\ &subject\; to \;(1/c)\psi(cg_i(x))\le0,\;i=1,...,m,\\ &x\in X \end{aligned} minf(x)+(1/c)i=1mξ(cgi(x))subjectto(1/c)ψ(cgi(x))0,i=1,...,m,xX

拉格朗日函数为:
L 4 ( x , λ , c ) = f ( x ) + 1 c ∑ i = 1 m [ λ i ψ ( c g i ( x ) ) + ξ ( c g i ( x ) ) ] , x ∈ X , λ ≥ 0 L_4(x,\lambda,c)=f(x)+\frac{1}{c}\sum\limits_{i=1}^m[\lambda_i\psi(cg_i(x))+\xi(cg_i(x))],\quad x\in X,\lambda\ge0 L4(x,λ,c)=f(x)+c1i=1m[λiψ(cgi(x))+ξ(cgi(x))],xX,λ0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老实人小李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值