拓扑图论、常见的图

本文介绍了拓扑图论的基本概念,包括图的嵌入和空间结构;重点讨论了彼得森图、正则图(如k-正则图和完全图)、二分图、完全二分图、多部图和平衡多部图等,以及平面图的瓦格纳定理和竞赛图的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一,拓扑图论

二,彼得森图

三,正则图

四,完全图

1,完全图

2,K7

3,K5

五,二分图、完全二分图

六,多部图、完全多部图

七,平衡多部图、平衡完全多部图

八,广义子图、禁图表征

1,广义子图

2,广义子图定理

3,禁图表征

4,广义子图的二元关系

九,平面图

1,瓦格纳定理

十,竞赛图


一,拓扑图论

拓扑图论研究曲面中的图嵌入、图的空间嵌入及作为拓扑空间的图,还研究图的浸入。

二,彼得森图

彼得森图由10个点组成,它不是平面图。

三,正则图

每个节点的度数都是k的无向图,称为k-正则图。

对于有向图,这个度数指的是入度和出度之和。

所以对于奇数k,k-正则图一定包含偶数个顶点。

判断算法:

	//判断是不是k-正则图
	static bool isCompleteGraph(int k, UndirectedGraphData<int> &g)
	{
		for (auto &mi : g.adjaList) {
			if (mi.second.size() != k)return false;
		}
		return true;
	}

四,完全图

1,完全图

完全图指的是,对于不同的2点,点A到点B之间恰好有一条边,这样的简单图称为完全图。

n个点的无向完全图有n(n-1)/2条边,n个点的有向完全图有n(n-1)条边。

完全图用Kn表示。

无向完全图Kn是(n-1)正则图,有向完全图Kn是(2n-2)正则图。

2,K7

比如无向完全图K7是6正则图:

PS:正则图、完全图很适合用来做动漫特效,比如K7就可以表示集齐七龙珠之后,阵法中的能量交换路径。

3,K5

K5是彼得森图的广义子图。

五,二分图、完全二分图

二分图

六,多部图、完全多部图

若一个图的节点集能分成k个两两不交的非空子集,使得这个图的每一条边的两端点不在同一个子集内,则称这个图为k部图。

二部图也叫二分图。

完全k部图是一种特殊的k部图,可以把图中的顶点分成k个集合,使得任意2个集合各任取一个顶点都相连。

七,平衡多部图、平衡完全多部图

如果一个多部图中,任意2个子集的点数差都不超过1,则称为平衡多部图。

如果一个完全多部图是平衡多部图,则称为平衡完全多部图。

当k=2时,分别称为平衡二部图、平衡完全二部图。

八,广义子图、禁图表征

1,广义子图

参考图论

广义子图也叫图子式。

2,广义子图定理

待更新

https://zh.wikipedia.org/wiki/%E5%9B%BE%E5%AD%90%E5%BC%8F

3,禁图表征

禁图表征是一种图论专有的语法,该语法的形式是:

只有一个图不以某些图作为广义子图,那么这个图就满足某个性质。

这种定理,称为这种性质的禁图表征。

4,广义子图的二元关系

待更新

九,平面图

1,瓦格纳定理

瓦格纳定理就是平面图的禁图表征:

当且仅当一个图不存在完全图K5和完全二分图K3,3的子式时,这个图才是平面图。

十,竞赛图

竞赛图是通过在无向完全图中为每个边缘分配方向而获得的有向图。

竞赛图往往用来表达单循环赛事的胜负情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值