图论

目录

〇,图论概述

一,无向图、有向图、混向图

二,图的表示

三,图的基本概念

0,自环

1,平行边(多重边)

2,简单图

3,入度、出度

4,可达(连通)

5,路径、链路、回路

6,简单路径、简单链路、简单回路

四,图的常见运算

1,删边

2,删点

3,缩边

4,缩点

五,图的其他常见概念

1,严格子图、普通子图、广义子图

2,删子图

3,k连通

六,有向图的基图

七,有向图的核

八,最优划分问题

1,最优划分问题

2,芯片布线问题

3,分批光刻


〇,图论概述

图论分为结构图论、代数图论、拓扑图论、极值图论、随机图论五大块。

一,无向图、有向图、混向图

图由节点和边组成。

按照边是否有方向,图分为无向图和有向图。如果部分有向部分无向,那就是混向图。

网格图根据场景,既可以是有向图也可以是无向图。

二,图的表示

常见的表示方法有三种:邻接表、邻接矩阵、边集。

三种表示方法都可以用于表达无向图和有向图。

无向图的默认表示法:邻接矩阵是对称的,一条边出现在2个节点的邻接表中。

无向图的缩半表示法:邻接矩阵不是对称的,一条边只出现在1个节点的邻接表中。

三,图的基本概念

0,自环

一条边的起点和终点相同,这条边就叫自环。

1,平行边(多重边)

在无向图中,关联一对顶点的无向边如果多于1条,则称这些边为平行边。
在有向图中,关联一对顶点的有向边如果多于1条,并且这些边的始点与终点相同(也就是它们的的方向相同),称这些边为平行边。

2,简单图

含平行边的图称为多重图,既不含平行边也不包含自环的图称为简单图。

3,入度、出度

有向图中,节点A的入度是指有多少条边指向A,出度是指有多少条边从A出发指向别的节点。

对于有自环的有向图,自环既算入度也算出度。

4,可达(连通)

在一个无向图或有向图中,如果存在一条路径以A为起点,以B为终点,我们就说从A到B可达。

也可以说从A到B是连通的。

5,路径、链路、回路

一系列的边首尾相连构成一条路径,如果起点终点相同则叫链路,不同则叫回路,合起来都叫路径。

6,简单路径、简单链路、简单回路

简单指的是路径中不会经过重复的点。(这也蕴含了不会经过自环)

四,图的常见运算

1,删边

在一个图中,删掉一个边。如果产生孤立点,则保留该孤立点。

2,删点

在一个图中,删掉一个点的操作指的是删掉一个点并删除和它相连的所有边。

PS:删点相当于若干次删边之后,再删掉一个孤立点。

3,缩边

在一个图中,删除一条边并把两个端点缩成一个点,对于简单图还需要把可能存在的重复边删除。

4,缩点

在一个图中,把互相连通的若干个点缩成一个点,把这些点之间的边都删除,避免产生自环,对于简单图还需要把可能存在的重复边删除。

PS:缩点相当于若干次缩边。

五,图的其他常见概念

1,严格子图、普通子图、广义子图

严格子图是原图只经过删点得到的图。

普通子图是原图只经过删点和删边得到的图。

广义子图是原图经过删点、删边和缩边得到的图。

在不同的语境下,"子图"这个词可能有这3种含义,需要根据情况区分。

2,删子图

在一个图中,删掉一个子图指的是把子图的所有节点(包括孤立点)从原图中删掉。

3,k连通

对于一个图,如果至少删除k(k>=0)个点,才能变成不连通图或者单点图,则称原图为k连通图

六,有向图的基图

把一个有向图A转化成无向图B,所有的有向边换成无向边,得到的图叫做原图的基图。

七,有向图的核

博弈的图论模型——必败态与核_Masked__Dance的博客-CSDN博客

八,最优划分问题

1,最优划分问题

划分是指把所有节点分为若干个不相交集合,即若干个模块,有些边在模块内,有些边连接2个不同的模块。

有一类图论问题,是求一种划分方式,满足某种划分约束,使得某个函数有最大值或最小值。根据函数的不同有不同的问题类型。

2,芯片布线问题

逻辑门或单元作为点,连线关系作为边,求模块划分方式,每个模块的节点数有下限和上限,使得所有模块间的边权值和最小。

3,分批光刻

不同的器件要分批次光刻,同一批次中的器件之间的间距不能太小,否则会互相干扰,这是工艺的极限。

抽象成最优划分问题就是,每个不相交集合内的所有边的权值有个最小值,把目标函数定义为所有最小值的最小值,求目标函数的最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值