[TensorFlow] slim.arg_scope()

例如如下代码

import tensorflow as tf
"""
使用@slim.add_arg_scope修饰目标函数
	用 slim.arg_scope()为目标函数设置默认参数.
#The TensorFlow contrib module will not be included in TensorFlow 2.0.
首先用@slim.add_arg_scope修饰目标函数fun1(),然后利用slim.arg_scope()为它设置默认参数。

"""
slim =tf.contrib.slim
@slim.add_arg_scope
def fun1(a=0,b=0):
    return (a+b)
with slim.arg_scope([fun1],a=10):
    x=fun1(b=30)
    print(x)

所以,在使用过程中可以直接slim.conv2d( )等函数设置默认参数。例如在下面的代码中,不做单独声明的情况下,slim.conv2d, slim.max_pool2d两个函数默认的步长都设为1,padding模式都是’VALID’的。但是也可以在调用时进行单独声明。这种参数设置方式在构建网络模型时,尤其是较深的网络时,可以节省时间。

with slim.arg_scope(
               [slim.conv2d, slim.max_pool2d],stride = 1, padding = 'VALID'):
    net = slim.conv2d(inputs, 32, [3, 3], stride = 2, scope = 'conv1')
    net = slim.conv2d(net, 32, [3, 3], scope = 'conv2')
    net = slim.conv2d(net, 64, [3, 3], padding = 'SAME', scope = 'conv3')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值