这题是1860和3259的一个结合,用bellman算法做。
使用1860中的逆向bellman求最大路径的思想。
因为没有指定当前货币,所以像3259中一样初始化的时候把所有的货币量初始化为1。也可以初始化为其他值。
松弛的时候和最小路径相反,更新权值为较大值。
这样经过N-1次松弛后,遍历所有边,若还可以更新权值,则说明图中存在正环(即可无限增大的环),于是返回Yes。
#include <iostream>
#include <map>
#include <string>
#include <stdio.h>
using namespace std;
struct Edge{
int s;
int e;
double r;
};
int N,M;
double d[31];
map<string,int> index;
Edge edges[900];
bool bellman(){
for(int i=1;i<=N;++i)
d[i] = 1;
//d[cur] = 1;
for(int i=1;i<N;++i){
for(int j=0;j<M;++j){
double t = d[edges[j].s]*edges[j].r;
if(d[edges[j].e] < t)
d[edges[j].e] = t;
}
}
for(int j=0;j<M;++j)
if(d[edges[j].e] < (d[edges[j].s])*edges[j].r)
return true;
return false;
}
int main(){
int testcase = 1;
while(cin>>N,N!=0){
string key;
for(int i=1;i<=N;++i){
cin>>key;
index[key] = i;
}
cin>>M;
string A,B;
double rAB;
for(int i=0;i<M;++i){
cin>>A>>rAB>>B;
edges[i].s = index[A];
edges[i].e = index[B];
edges[i].r = rAB;
}
cout<<"Case "<<testcase<<": ";
++testcase;
if(bellman())
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}