1.租服务器
点击控制台 -> 容器实例 -> 租用新实例
关于租型号
点每个专区下面都能看到还剩多少可租用的实例
一般4090,3080都比较难抢 (我是早起蹲到的)
小白建议不要租用华为晟腾的 因为它的配置和普通的有一些区别,容易配不明白,跑模型代码里一般用的是gpu 如果租用这个还得改代码 改成npu 的 比较麻烦
关于选镜像
这里有三种镜像,如果平台里配好的没有你想要的环境 平台配好的环境配置
一般就就选Miniconda-conda3
python版本无所谓 随便选一个就好 进入创建虚拟环境之后可以选自己需要的版本
但是cuda版本要提前看好
比如说我想安装的pytorch版本是1.12.1
我们需要进入pytorch官网查它相应的提供了哪些版本的cuda
怎么确定安哪个cuda
进入pytorch官网link
点击Get started
点击 previous pytorch versions
往下滑找需要的pytorch版本
比如说我要安装的pytorch版本是1.12.1
这里可以看到一共有三个版本的cuda 分别是10.2 11.3 11.6
回到这个页面,我们就可以选择安10.2/11.3
然后就可以 顺利开机
Pycharm连接服务器
Pycharm 设置 -> 项目 -> Python解释器
点击添加解释器
点击基于SSH
回到AutoDL控制台
看到右边的SSH登录
复制登录指令
比如说我的登录指令如下
ssh -p 12345 root@connect.nmb1.seetacloud.com
主机名就是 @connect.nmb1.seetacloud.com
用户名 root
端口 12345
然后点击下一步
再复制密码就行了 正常往后面点就行
然后回需要选择解释器路径
点进去之后 root->miniconda->bin->python3.8
(我的还在跑…借用一下别人的图)
选择映射的文件夹 一般是在root/autodl-tmp里创建一个新的文件夹来放置
点击完成就连接上了!
传输数据
pycharm里面的文件传输 有时候会报很多错
可以不用管 我们用JupyterLab来进行传输!
回到控制台 看到右边有一个JupyterLab
点进去就能看到这个界面
刚刚我们把项目文件夹创建在了autodl-tmp下
点进去之后就可以在这个页面进行文件传输
可以拖拽也可以点击上方黑色的那个箭头
不过缺点是文件只能一个一个传
如果传的文件比较大
需要等一等! 不要把页面关掉
传完之后看看文件的大小是否一致 如果不一致要么是还在传要么是之前被打断了需要重新再传
配置环境
在Pycharm中点击终端的加号
然后你就会看见相应的remote python …点击创建新终端就好
后面就是正常的环境配置
创建conda环境 下载pytorch 安装依赖等等
需要注意的一点是 在安装了pytorch之后最好进行一下确认
print(torch.__version__) # 应显示相应版本号
print(torchvision.__version__) # 应显示相应版本号
print(torch.cuda.is_available()) # 必须输出True
跑一下这个代码
输出正常确保cuda能用再往后走!!
文件找不到的问题
在pycharm中点击 设置-> 构建,执行,部署-> 部署
查看这个根路径
点击自动检测 可能会发现是在root
这时在这里直接修改没有用
需要在控制台使用指令
cd autodl-temp/baf
这时根目录就会切换到你的项目文件下
这时就能找到文件了