上次已经和大家分享了因果推断中的贝叶斯相关知识,今天这部分和大家分享因果推断中的混杂因子,D-分离,后门准则的相关内容。
先上例子
以上一篇中的诺贝尔奖和巧克力的事件为例,下图是他们三者的因果图,从图中可以看出这是一个叉式结构,即A和C相关。但是他们的相关性是通过“经济,教育水平”关联的,他们之间是伪相关,而B就是混杂因子,是它造成了A和C之间的伪相关。从字面上也很好理解,是因为B的存在导致我们对A和C之间的因果关系产生了混乱。
下图这种形式B也是confunder,即混杂因子。这种情况下,我们想要去发掘A和C的因果关系时,需要去除混杂因子,因为A->C的因果关系和A<-B->C造成的伪相关混合在一起了。