因果推断(二)——混杂因子,D-分离,后门准则

本文深入探讨了因果推断中的关键概念——混杂因子、D-分离和后门准则。通过诺贝尔奖、巧克力和教育水平的例子,解释了混杂因子如何造成伪相关,并利用D-分离原则分析了如何在不同结构中判断变量的条件独立性。后门准则则提供了一种消除伪相关,揭示真正因果关系的方法。对于因果关系的正确分析,理解和应用这些原理至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上次已经和大家分享了因果推断中的贝叶斯相关知识,今天这部分和大家分享因果推断中的混杂因子,D-分离,后门准则的相关内容。

图片先上例子

以上一篇中的诺贝尔奖和巧克力的事件为例,下图是他们三者的因果图,从图中可以看出这是一个叉式结构,即A和C相关。但是他们的相关性是通过“经济,教育水平”关联的,他们之间是伪相关,而B就是混杂因子,是它造成了A和C之间的伪相关。从字面上也很好理解,是因为B的存在导致我们对A和C之间的因果关系产生了混乱。

下图这种形式B也是confunder,即混杂因子。这种情况下,我们想要去发掘A和C的因果关系时,需要去除混杂因子,因为A->C的因果关系和A<-B->C造成的伪相关混合在一起了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值