一篇文章讲清楚同济版线性代数中《第1章——行列式》所有计算行列式的方法

目录

(0)、理论基础

1. 行列式的性质

2. 行列式按行(列)展开定理

(一)、 行对换法

题型一

1. 行列式形式(P11 例6):

2. 方法概述:

3. 书中例题:

4.简化版方法概述:​编辑

题型二

1. 行列式形式(P15 例11)

2. 方法概述:

3. 书中例题: 

(二)、行列计算法

题型一

1. 行列式形式(P12 例7)

2. 方法概述:

3. 书中例题:

题型二

1. 行列式形式(P12 例8):

2. 方法概述:

3. 书中例题:

题型三

1. 行列式形式(P13 例9)

2. 方法概述:

3. 书中例题:

题型四

1. 行列式形式(P14 例10)

2. 方法概述:

3. 书中例题:

(三)、行列式行列展开法

题型一

1. 行列式形式(P17 例7续)

2. 方法概述:

3. 书中例题:

(四)、范德蒙德行列式

参考资料


(0)、理论基础

1. 行列式的性质

性质1   行列式与它的转置行列式相等. 
性质2   对换行列式的两行(列),行列式变号. 
         推论   如果行列式有两行(列)完全相同,则此行列式等于零. 
性质3   行列式的某一行(列)中所有的元素都乘同一数 k,等于用数 k 乘此行列式. 

         推论   行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面.
性质4   行列式中如果有两行(列)元素成比例,则此行列式等于零.
性质5   若行列式的某一行(列)的元素都是两数之和,例如第 i 行的元素都是两数之和,则D等于下列两个行列式之和.
性质6   把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变.

2. 行列式按行(列)展开定理

(1) 余子式
  在n阶行列式中,把(i,j)元 aij 所在的第i行和第j列划去后,留下来的 n-1 阶行列式叫做(i,j)元 aij 的余子式,记作 Mij.

(2) 代数余子式
  记Aij = (-1)^(i+j)[这里的(i+j)是指数] * Mij,Aij 叫做(i,j)元 aij 的代数余子式.

引理   一个n阶行列式,如果其中第i行所有元素除(i,j)元 aij 外都为零,那么这行列式等于 ai j与它的代数余子式的乘积,即D = aij * Aij.

定理(行列式按行/列展开法则)   行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积 之和,即
D =ai1Ai1 + ai2Ai2 + … + ainAin (i=1,2,…,n)
D =a1jA1j + a2jA2j + … + anjAnj (j=1 ,2,… ,n)

(一)、 行对换法

题型一

1. 行列式形式(P11 例6):

注意这种题目形式是有规则的,数值排列有章,文字有些乏于描述这种规则,看图吧。

2. 方法概述:

第一轮行交换:第n行与第n-1行交换,第n-1行与第n-2行交换......第2行与第1行交换。
                         (第一轮一共经过n-1次交换)
第二轮行交换:第n行与第n-1行交换,第n-1行与第n-2行交换......第3行与第2行交换。(此轮交换第1行不动)。
                         
(第二轮一共经过n-2次交换)
第三轮行交换:第n行与第n-1行交换,第n-1行与第n-2行交换......第4行与第3行交换。(此轮交换第1、2行不动)。
                        
(第三轮一共经过n-3次交换)
第四轮行交换:第n行与第n-1行交换,第n-1行与第n-2行交换......第5行与第4行交换。(此轮交换第1、2、3行不动)。
                       
(第四轮一共经过n-4次交换)
依次循环,最终化为上三角行列式。

3. 书中例题:

P11 例6(1)

P11 例6(2)

4.简化版方法概述:

题型二

1. 行列式形式(P15 例11)

行列式数值排列规则,如图。

2. 方法概述:

我选择记结论:

3. 书中例题: 

P15 例11

(二)、行列计算法

题型一

1. 行列式形式(P12 例7)

注意这种题目没用规则,数值排列无章。

2. 方法概述:

利用行列式性质2、3、6及其推论关于行和列的三种运算来简化运算,最好可以凑出上三角行列式、下三角行列式、对角行列式的形式。
性质2   对换行列式的两行(列),行列式变号. 
         推论   如果行列式有两行(列)完全相同,则此行列式等于零. 
性质3   行列式的某一行(列)中所有的元素都乘同一数 k,等于用数 k 乘此行列式. 

         推论   行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面.
性质6   把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变.

3. 书中例题:

P12 例7

题型二

1. 行列式形式(P12 例8):

注意此题型行列式数值排列有规则:各列元素之和相等,且主对角线元素相同,行列式关于主对角线对称。如下面的一个例子:

2. 方法概述:

把所有元素加到第一行,再用一个数除以第一行把第一行全化为1,最后用第一行减去其余所有行(可以乘以某个数)化为下三角形行列式。

3. 书中例题:

P12 例8

我举一个例子:

题型三

1. 行列式形式(P13 例9)

注意此行列式数值排列规则,特点是第一列元素相同,且可像图中一样用表达式表示。

2. 方法概述:

从第4行开始,后行减前行,但后一次比前一次少一次减法,具体流程如下:
第一轮行减法:第4行减去第3行,第3行减去第2行,第2行前去第1行。
第二轮行减法:第4行减去第3行,第3行减去第2行。
第三轮行减法:第4行减去第3行。

3. 书中例题:

P13 例9

题型四

1. 行列式形式(P14 例10)

数值排列......算有规则吧...

2. 方法概述:


D=D1*D2

3. 书中例题:

P14 例10


书中解答是证明,结论D=D1*D2可直接用。 

(三)、行列式行列展开法

题型一

1. 行列式形式(P17 例7续)

注意行列式数值排列无规则。
此题就是P12的例7,不过P12是通过行列计算将行列式化为下三角形来简化的计算,而P17的方法是通过按行列展开来简化计算。

2. 方法概述:

请见  (0)、理论基础  中 行列式按行(列)展开定理。

3. 书中例题:


(四)、范德蒙德行列式

我选择直接记结论,具体证明可看P18。
范德蒙德行列式的计算只看第二行,当然前提是得满足范德蒙德行列式的形式,如图:

举个两个例子加以理解:

参考资料

同济大学数学系. 工程数学 线性代数 第六版. 高等教育出版社. 2014
同济大学数学系. 线性代数 附册学习辅导与习题全解同济 第六版. 高等教育出版社. 2014
范德蒙德行列式_百度百科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好真君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值