PTQ4ViT: Vision Transformer的PTQ方法与框架

参考论文:https://arxiv.org/abs/2111.12293

前言

将传统的PTQ策略(文章以对称均匀量化为例)直接应用于Vision Transformer,通常会导致较大的精度损失,例如实施8bits量化时,预测精度损失可能超过1%,主要原因在于,Post-Softmax与Post-GELU输出激活的数据分布是偏离高斯分布的:

  • 首先在Self-Attention模块中,Softmax计算输出的Attention map呈现对角线聚焦分布、体现出严重的不平衡分布(unbalanced distribution),大多数数值趋近于零;为了有效量化少数的较大数值,需要计算得到较大的Scaling factor,但会导致量化分辨率的不足,因而较小数值的量化效果会变差(直接量化为整数零),并产生较大的量化误差;
  • GELU输出激活呈现非对称分布,正数区间较大、负数区间较小,直接应用对称量化(完全一致的量化参数)、容易导致较差的量化效果。因此采用非对称或非均匀量化是一种策略,而文章提出了Twin Uniform量化策略,在所划分的不同区间内,分开、独立实施均匀量化(不
  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch支持通过量化技术来压缩模型,减小模型大小和内存占用,并提高模型的推理性能。其中,PTQ(Post Training Quantization)是一种常见的量化方法,它可以在训练后对模型进行量化PTQ的基本思路是将原始模型中的浮点数参数转化为固定位宽的整数,从而减小模型的大小和内存占用,提高模型在嵌入式设备上的推理速度。在PTQ中,可以对权重、激活值、梯度等进行量化。 下面是使用PyTorch进行PTQ的基本流程: 1. 定义模型 首先需要定义一个PyTorch模型。 2. 定义量化方法 接下来需要定义量化方法。PyTorch提供了一些量化方法,可以根据实际需求进行选择。例如,可以使用torch.quantization.quantize_dynamic()方法进行动态量化,或者使用torch.quantization.quantize_static()方法进行静态量化。 3. 对模型进行量化 使用定义的量化方法模型进行量化,将浮点数参数转化为整数参数。可以使用torch.quantization.prepare()方法模型进行准备,使用torch.quantization.convert()方法进行转换。 4. 测试量化后的模型 量化完成后,需要测试量化后的模型,确保准确性没有明显下降。 下面是一个简单的示例代码,演示了如何使用PyTorch进行PTQ: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torchvision.models import resnet18 from torch.utils.data import DataLoader # 定义模型 model = resnet18() # 定义数据预处理 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 for epoch in range(5): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader))) # 定义量化方法 quantization_method = torch.quantization.quantize_dynamic # 对模型进行量化 model.qconfig = torch.quantization.get_default_qconfig('fbgemm') quantized_model = quantization_method(model, qconfig_spec={nn.Linear}, dtype=torch.qint8) # 测试量化后的模型 quantized_model.eval() testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False) correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = quantized_model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the test images: %d %%' % (100 * correct / total)) ``` 注意:PTQ可能会对模型的准确性产生一定的影响,因此需要根据实际情况进行调整。同时,PTQ的效果也受到数据集的影响,因此需要在实际应用中进行测试和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值