顶连通度小于等于边连通度的证明

对于一个给定的无向简单连通图 G G G, G G G的(顶)连通度 κ ( G ) \kappa(G) κ(G) 必然小于等于其边连通度 λ ( G ) \lambda(G) λ(G)

κ ( G ) < = λ ( G ) \kappa(G)<=\lambda(G) κ(G)<=λ(G)

引理一:设 G ( V , E ) G(V,E) G(V,E) 为无向连通图,且 e ∈ E e\in E eE G G G 的桥,则 G − e G-e Ge 恰有两个连通分量

证明,设 G − e G-e Ge 有三个以上连通分量,那么 e e e 的两个端点 p i , p j pi,pj pi,pj 不可能全部位于某一个连通分量

G ′ G' G 中,否则由于 G ′ G' G 连通,则 G ′ G' G p i , p j pi,pj pi,pj 间由路 P P P 相连, P P P e e e 构成 G G G 中的一个圈 C C C ,由于 e ∈ C e\in C eC

删掉 G G G 中圈 C C C 上一条边 e e e 不会改变 G G G 的连通性,故 G − e G-e Ge 连通,这和 e e e G G G 的桥矛盾

于是不妨设 p i ∈ V ( G i ) p j ∈ V ( G j ) pi\in V(G_i) pj \in V(G_j) piV(Gi)pjV(Gj) ( G i G j G_i G_j GiGj 为两个不同的连通分量)令 G k G_k Gk 是不同于 G i , G j G_i,G_j Gi,Gj 的第三个连通分量

于是对于任意 p k ∈ V ( G k ) pk \in V(G_k) pkV(Gk) ,在 G G G p k pk pk G i G_i Gi 中任意顶点 v i v_i vi 不连通,否则存在一条 G G G 中的路 P ′ P' P 连接 p k pk pk

v i v_i vi ,注意 v i ∈ V ( G i ) , p k ∈ V ( G k ) v_i \in V(G_i) , pk \in V(G_k) viV(Gi),pkV(Gk) , P ′ P' P 的内部顶点不可能属于除 G i , G j , G k G_i , G_j , G_k Gi,Gj,Gk 以外的其它连通分量,否则 p k pk pk 和它在 P ′ P' P 上的相邻顶点构成的边 e ′ e' e 是横跨 G k G_k Gk 和除 G i , G j . G k G_i , G_j . G_k Gi,Gj.Gk 以外的其它某个连通分量的边,由于 G G G 中的边要么端点全部位于某个连通分支,要么就是满足 p i ∈ V ( G i ) p j ∈ V ( G j ) pi\in V(G_i)pj \in V(G_j) piV(Gi)pjV(Gj) 的边 e e e e ′ e' e 不可能存在,矛盾

由于 v i ∈ V ( G i ) , p k ∈ V ( G k ) v_i \in V(G_i) , pk \in V(G_k) viV(Gi),pkV(Gk)

P ′ P' P 上的边不可能全部为两端点全在 G i , G j G_i,G_j Gi,Gj G k G_k Gk 中的边,出于和 e ′ e' e 不可能存在类似的理由, P ′ P' P 上的边不可能为两端点分别在 G i , G k G_i,G_k Gi,Gk G j , G k G_j,G_k Gj,Gk 中的边,故 P ′ P' P 中必然存在一条两端点分别在 G i , G j G_i , G_j Gi,Gj 中的边,这条边只能为 e e e , P ′ P' P 上从 v i v_i vi p k pk pk 的方向上, e e e 的端点 p j pj pj 不可能在 p i pi pi 之前,否则仿照和证明 P ′ P' P 中必然存在一条两端点分别在 G i , G j G_i , G_j Gi,Gj 中的边类似的证法, P ′ P' P 上从 v i v_i vi p j pj pj 的子路径上必然存在边 e e e ,由于 P ′ P' P 是一条路,这是不可能的,

于是同样采取类似的证法,可证明 P ′ P' P 上从 p j pj pj p k pk pk 的子路径上必然存在边 e e e 同样不可能,这就证明了对于任意 p k ∈ V ( G k ) pk \in V(G_k) pkV(Gk) ,在 G G G p k pk pk G i G_i Gi 中任意顶点 v i v_i vi 不连通,或者类似的我们可以证对于任意 p k ∈ V ( G k ) pk \in V(G_k) pkV(Gk) ,在 G G G p k pk pk G j G_j Gj 中任意顶点 v j v_j vj 不连通,于是 G G G 不连通,矛盾证毕

下面来证 κ ( G ) < = λ ( G ) \kappa(G)<=\lambda(G) κ(G)<=λ(G)

G G G 存在 G G G 的边构成的集合 F F F 满足 ∣ F ∣ = λ ( G ) |F| = \lambda (G) F=λ(G) ,使得删除 G G G 中任意 f < ∣ F ∣ f<|F| f<F 条边后 G G G 连通,但删除

F F F 中的全部边后 G G G 不连通。由于从 G G G删除 F F F 中的 ∣ F ∣ − 1 |F|-1 F1 条边后得到的图 G F G_F GF 连通,在 G F G_F GF 中删除 F F F 中剩下的最后一条边后 G F G_F GF 不连通,于是 F F F 中最后一条边是 G F G_F GF 的桥,故由引理一, G F G_F GF 的这条边删除后恰有两个连通分量

现设从 G G G 中删除 F F F 中所有边得到的图为 G F ′ G'_F GF ,于是 G F ′ G'_F GF 恰有两个连通分量 G 1 , G 2 G1,G2 G1,G2 ,下面证 F F F 中任意一条边不可能两个端点都位于 G 1 G1 G1

若有 f ∈ F f\in F fF 两个端点均位于 G 1 G1 G1 中,设 G F ′ ′ = G − ( F − f ) G''_F = G- (F- {f} ) GF′′=G(Ff) ,由于 G 1 G1 G1 连通,和引理一中证明所述类似

G F ′ ′ G''_F GF′′ 中存在包含 f f f 的一条圈 C C C ,由于 G F ′ ′ G''_F GF′′ 连通,故 G F ′ ′ − f = G F ′ G''_F- {f} =G'_F GF′′f=GF 依然连通,矛盾

同理可证 F F F 中任意一条边 f f f 的两个端点不可能均位于 G 2 G2 G2 中,于是 f f f 分别连接 G 1 , G 2 G1,G2 G1,G2 中一个顶点,即 f f f 横跨 G 1 , G 2 G1,G2 G1,G2

G G G G 1 G1 G1 的所有顶点中与 F F F 中的边关联的所有顶点的集合为 N ( G 1 ) N(G1) N(G1) ,若 ∣ V ( G 1 ) ∣ > ∣ N ( G 1 ) ∣ |V(G1)| > |N(G1)| V(G1)>N(G1) 则对于任意 v 1 , v 2 ∈ N ( G 1 ) v1,v2\in N(G1) v1,v2N(G1) ( v 1 ≠ v 2 v1\ne v2 v1=v2 )设与 v 1 , v 2 v1 , v2 v1,v2 关联的任意一条 F F F 中的边分别为 f 1 , f 2 f1,f2 f1,f2 ,由于 f 1 , f 2 f1,f2 f1,f2 横跨 G 1 , G 2 G1,G2 G1,G2 ,故 f 1 , f 2 f1,f2 f1,f2 不可能是同一条边,否则 v 1 = v 2 v1=v2 v1=v2 矛盾,于是设对于任意 v ∈ N ( G 1 ) v\in N(G1) vN(G1) ,与 v v v关联的 F F F 中的边的集合为 F ( v ) F(v) F(v) ,则

对于任意 v 1 , v 2 ∈ N ( G 1 ) v1,v2\in N(G1) v1,v2N(G1) ( v 1 ≠ v 2 v1\ne v2 v1=v2 ) 有 F ( v 1 ) ∩ F ( v 2 ) = ⊘ F(v1)\cap F(v2) = \oslash F(v1)F(v2)= 另外 ⋃ v ∈ N ( G 1 ) F ( v ) = F \bigcup_{v\in N(G1)}{F(v)} = F vN(G1)F(v)=F 于是

∣ F ∣ = ∑ v ∈ N ( G 1 ) ∣ F ( v ) ∣ > = ∑ v ∈ N ( G 1 ) 1 = ∣ N ( G 1 ) ∣ |F| = \sum_{v\in N(G1)}{|F(v)|}>=\sum_{v\in N(G1)}{1} = |N(G1)| F=vN(G1)F(v)>=vN(G1)1=N(G1)

当我们从 G G G 中删除 N ( G 1 ) N(G1) N(G1) 中所有的顶点时,由于 F F F 中所有的边均被从 G G G 中移除,故 V ( G 1 ) − N ( G 1 ) V(G1)-N(G1) V(G1)N(G1)

中的任意顶点不可能存在和 N ( G 2 ) N(G2) N(G2) 中顶点相连的路,故此时的图已不连通,从而 κ ( G ) < = ∣ N ( G 1 ) ∣ < = ∣ F ∣ = λ ( G ) \kappa (G) <= |N(G1)| <= |F| = \lambda (G) κ(G)<=N(G1)<=F=λ(G)

∣ V ( G 1 ) ∣ = ∣ N ( G 1 ) ∣ |V(G1)| = |N(G1)| V(G1)=N(G1) ,任取 G 1 G1 G1 中任意顶点 v v v ,设 G 1 G1 G1 v v v 的所有邻接顶点为 N ( v ) N(v) N(v) ,则对于任意 v 1 , v 2 ∈ N ( v ) v1,v2\in N(v) v1,v2N(v) ( v 1 ≠ v 2 v1\ne v2 v1=v2 ) 有 F ( v 1 ) ∩ F ( v 2 ) = ⊘ F(v1)\cap F(v2) = \oslash F(v1)F(v2)= 另外对于任意 v ′ ∈ N ( v ) F ( v ) ∩ F ( v ′ ) = ⊘ v'\in N(v) F(v) \cap F(v') = \oslash vN(v)F(v)F(v)=

( ⋃ v ′ ∈ N ( v ) F ( v ′ ) ) ∪ F ( v ) ⊆ F \bigcup_{v'\in N(v)}{F(v')}) \cup F(v) \subseteq F vN(v)F(v))F(v)F N 2 ( v ) N_2(v) N2(v) G G G v v v G 2 G2 G2 通过 F F F 中的边邻接的所有顶点则 ∣ F ( v ) ∣ = N 2 ( v ) N ( v ) ∩ N 2 ( v ) = ⊘ |F(v)| = N_2(v) N(v) \cap N_2(v) = \oslash F(v)=N2(v)N(v)N2(v)=

∣ F ∣ > = ∣ ( ⋃ v ′ ∈ N ( v ) F ( v ′ ) ) ∪ F ( v ) ∣ = ∑ v ′ ∈ N ( v ) ∣ F ( v ′ ) ∣ + ∣ F ( v ) ∣ > = ∑ v ′ ∈ N ( v ) 1 + ∣ N 2 ( v ) ∣ = ∣ N ( v ) ∣ + ∣ N 2 ( v ) ∣ |F|>= |(\bigcup_{v'\in N(v)}{F(v')}) \cup F(v)| = \sum_{v'\in N(v)}{|F(v')|} + |F(v)|>= \sum_{v'\in N(v)}{1} + |N_2(v)| = |N(v)| + |N_2(v)| F>=(vN(v)F(v))F(v)=vN(v)F(v)+F(v)>=vN(v)1+N2(v)=N(v)+N2(v)

当从 G G G 中删去 N ( v ) N(v) N(v) N 2 ( v ) N_2(v) N2(v) 中所有顶点时, v v v 成为孤立顶点,此时图不连通

从而 κ ( G ) < = ∣ N ( v ) ∣ + ∣ N 2 ( v ) ∣ < = ∣ F ∣ = λ ( G ) \kappa (G)<=|N(v)| + |N2(v)| <=|F| = \lambda (G) κ(G)<=N(v)+N2(v)<=F=λ(G)

证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值