证明 :κ ≤ κ′ ≤ δ 图论

证明:点连通度小于等于边连通度小于等于最小度

κ:连通度,图G所具有的k顶点割中最小的k

κ′ :边连通度,图G中所有k边割中最小的k

δ :最小度

证:

先证κ′ ≤ δ  若G是平凡的,则κ′ = 0 ≤ δ。否则,与度为δ的点相连的所有边就构成了G的一个边割,由此可得:κ′ ≤ δ

 

再证κ ≤ κ′  当κ′=0时,G是平凡图或不连通的,κ ≤ κ′显然成立。否则,一定存在边数k=κ′的边割,所以至多删除该边割中的κ′个点使得G不连通,由此得:κ ≤ κ′

综上所述:κ ≤ κ′ ≤ δ证明完毕

书中原证明:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值