bzoj2342 [Shoi2011]双倍回文 (回文树)

题意:

在字符串s中寻找一个最长字串,这个子串必须是回文串并且这个字串的前半部分也是回文串。这个最长字串长度是4的倍数。

分析:

对于结点u,它的fail结点就是一个最长回文后缀,再fail一下,就又是一个短了一些的回文后缀,以此类推。对于u,我们只需要一直往上fail,看有没有一个fail结点长度是u的一半,有的话就找到了一个。

将这个过程反向过来,建立一个fail的树,从根节点dfs一下用vis标记长度即可。

代码:

#include <bits/stdc++.h>
using namespace std;
#define ms(a,b) memset(a,b,sizeof(a))
#define lson rt*2,l,(l+r)/2
#define rson rt*2+1,(l+r)/2+1,r
typedef unsigned long long ull;
typedef long long ll;
const int MAXN=5e5+5;
const double EPS=1e-8;
const int INF=0x3f3f3f3f;
const int MOD = 1e9+7;
int n, ans, vis[MAXN];
char s[MAXN];
vector<int> E[MAXN];
void addedge(int u,int v){
    E[u].push_back(v);
}
struct palin_tree{
    int ch[MAXN][30], fail[MAXN], len[MAXN], last, tot, cnt[MAXN];
    palin_tree(){
        len[1] = -1;    tot = 1;    fail[0] = 1;
        E[1].push_back(0);
    }
    int insert(int c, int n, char *s){
        int x = last;
        while(s[n-1-len[x]] != s[n])    x = fail[x];
        if(!ch[x][c]){
            int v = ++tot, k = fail[x];
            len[v] = len[x] + 2;
            while(s[n-1-len[k]] != s[n])    k = fail[k];
            fail[v] = ch[k][c];
            E[fail[v]].push_back(v);
            ch[x][c] = v;
        }
        last = ch[x][c];
        cnt[last]++;
        return len[ch[x][c]];
    }
}T;
void dfs(int u){
    if(T.len[u]%4==0 && vis[T.len[u]/2])    ans = max(ans,T.len[u]);
    vis[T.len[u]]++;
    for(int i=0;i<(int)E[u].size();i++){
        dfs(E[u][i]);
    }
    vis[T.len[u]]--;
}
int main(){
    ios::sync_with_stdio(false);
    scanf("%d",&n);
    scanf("%s",s+1);
    for(int i=1;i<=n;i++){
        T.insert(s[i]-'a',i,s);
    }
    dfs(1);
    cout << ans << endl;
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值