MATLAB07:数值计算

pdf版本笔记的下载地址: MATLAB07_数值计算(访问密码:3834)

学习一门技术最好的方式就是阅读官方文档,可以查看MATLAB官方文档

多项式的数值运算

使用MATLAB表示多项式

使用向量表示多项式

在MATLAB中,多项式可以用向量表示,向量中的元素为多项式的系数(降幂排序):第一位为多项式最高次项系数,最后一位为常数项.

例如多项式:
f ( x ) = x 3 − 2 x − 5 f(x) = x^3 - 2x - 5 f(x)=x32x5

可以用向量p = [1 0 -2 -5]表示.

多项式求值:polyval()

使用polyval(p, x)可以计算多项式px的每个点处的值.

a = [9,-5,3,7]; x = -2:0.01:5;
f = polyval(a,x);
plot(x,f);

在这里插入图片描述

多项式的乘法:conv()

使用conv(p1, p2)函数可以对两个向量p1p2进行卷积相乘,用于计算多项式的乘法.

例如多项式:
f ( x ) = ( x 2 + 1 ) ( 2 x + 7 ) f(x) = (x^2+1) (2x+7) f(x)=(x2+1)(2x+7)

可以使用conv()函数得到展开后的多项式:

p = conv([1 0 1], [2 7])

得到p = [2 7 2 7].

多项式的数值运算

多项式的因式分解:roots()

使用roots(p)函数可以对多项式p进行因式分解,即求表达式值为0的根.

p = roots([1 -3.5 2.75 2.125 -3.875 1.25])

得到p = [2 -1, 1+0.5i, 1-0.5i, 0.5],表示 x 5 − 3.5 x 4 + 2.75 x 3 + 2.125 x 2 + − 3.875 x + 1.25 = ( x − 2 ) ( x + 1 ) ( x − 1 − 0.5 i ) ( x − 1 + 0.5 i ) ( x − 0.5 ) x^5 -3.5 x^4 +2.75 x^3 + 2.125 x^2 + -3.875 x+1.25 = (x-2)(x+1)(x-1-0.5i)(x-1+0.5i)(x-0.5) x53.5x4+2.75x3+2.125x2+3.875x+1.25=(x2)(x+1)(x10.5i)(x1+0.5i)(x0.5).

多项式的微分:polyder()

使用polyder(p)函数可以计算多项式的导数.

例如对下面多项式求导:
f ( x ) = 5 x 4 − 2 x 2 + 1 f(x) = 5x^4 - 2x^2 + 1 f(x)=5x42x2+1

p = polyder([5 0 -2 0 1]);

得到p = [20 0 -4 0],表示计算得到导数 f ′ ( x ) = 20 x 3 − 4 x f'(x) = 20 x^3 - 4x f(x)=20x34x.

多项式的积分:polyint()

使用polyint(p, k)函数可以计算多项式p的积分,积分结果的常数项设为k.

例如对下面多项式求导:
f ( x ) = 5 x 4 − 2 x 2 + 1 f(x) = 5x^4 - 2x^2 + 1 f(x)=5x42x2+1

p = polyint([5 0 -2 0 1], 3)

得到p = [1 0 -0.6667 0 1 3],表示计算得到积分 ∫ f ( x ) d x = x 5 − 0.6667 x 3 + x + 3 \int f(x) dx = x^5 -0.6667x^3 + x + 3 f(x)dx=x50.6667x3+x+3.

非线性表达式的数值运算

方程(组)求根fsolve()

使用fsolve(fun, x0)求非线性方程组的根,fun为待求方程的函数句柄,x0为初值.

  1. 求方程 1.2 x + x sin ⁡ ( x ) + 0.3 = 0 1.2x+x\sin(x)+0.3=0 1.2x+xsin(x)+0.3=0 x = 0 x=0 x=0附近的解.

    f2 = @(x) (1.2*x+x*sin(x)+0.3);
    fsolve(f2,0)	% 得到 -0.3500
    
  2. 解方程组
    { e − e − ( x 1 + x 2 ) − x 2 ( 1 + x 1 2 ) = 0 x 1 cos ⁡ x 2 + x 2 sin ⁡ x 1 − 1 2 = 0 \begin{aligned} \left\{ \begin{aligned} e^{-e^{-(x_1+x_2)}} - x_2(1+x_1^2) = 0 \\ x_1 \cos x_2 + x_2 \sin x_1 - \frac{1}{2} = 0 \end{aligned} \right. \end{aligned} ee(x1+x2)x2(1+x12)=0x1cosx2+x2sinx121=0

    设定初值为 [ 0 , 0 ] [0, 0] [0,0]

    fun = @(x) [exp(-exp(-(x(1)+x(2))))-x(2)*(1+x(1)^2)...
        x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5]
    x0 = [0,0];
    x = fsolve(fun,x0)	% 得到[0.3532 0.6061]
    

数值微分

求差分:diff()

使用diff(X, n)计算向量Xn阶差分,n默认为1.

x = [1 2 5 2 1];
diff(x);	% 得到 [1 3 -3 -1]
diff(x,1);	% 得到 [1 3 -3 -1]
diff(x,2);	% 得到 [2 -6 2]

求导数:diff(y)./diff(x)

使用导数的定义
f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0) = \lim_{h\rarr 0} \frac{f(x_0 + h) - f(x_0)}{h} f(x0)=h0limhf(x0+h)f(x0)

可以计算函数在某点的近似导数.

x0 = pi/2; h = 0.1;
x = [x0 x0+h];
y = [sin(x0) sin(x0+h)];
m = diff(y)./diff(x)		% 得到 m = -0.005

h的取值越小,得到的近似导数越精确.

在这里插入图片描述

下面程序计算 f ( x ) = x 3 f(x) = x^3 f(x)=x3的一阶和二阶导数的值.

x = -2:0.005:2; y = x.^3;
m = diff(y)./diff(x);			% 计算一阶导数
m2 = diff(m)./diff(x(1:end-1));	% 计算二阶导数

plot(x,y,x(1:end-1),m,x(1:end-2),m2);
xlabel('x'); ylabel('y');
legend('f(x) =x^3','f''(x)','f''''(x)', 4);

在这里插入图片描述

数值积分

数值积分原理

有三种常见算法用于计算数值积分: 矩形法,梯形法,抛物线法,它们分别把微分区间的图形视为矩形,梯形,抛物线以计算面积.

算法图示表达式
矩形法(Midpoint Rule)在这里插入图片描述 ∫ a b f ( x ) d x = 2 h ∑ i = 0 ( n / 2 ) − 1 f ( x 2 i + 1 ) \int_a^b f(x) dx = 2h \sum_{i=0}^{(n/2)-1} f(x_{2i+1}) abf(x)dx=2hi=0(n/2)1f(x2i+1)
梯形法(Trapezoid Rule)在这里插入图片描述 ∫ a b f ( x ) d x = h 2 [ f ( a ) + 2 ∑ i = 1 n − 1 f ( x i ) + f ( b ) ] \int_a^b f(x) dx = \frac{h}{2} \left[ f(a) + 2\sum_{i=1}^{n-1} f(x_i) +f(b) \right] abf(x)dx=2h[f(a)+2i=1n1f(xi)+f(b)]
抛物线法(Simpson’s Rule)在这里插入图片描述 ∫ a b f ( x ) d x = h 3 [ f ( a ) + 2 ∑ i = 1 ( n / 2 ) − 1 f ( x 2 i ) + 4 ∑ i = 1 n / 2 f ( x 2 i − 1 ) + f ( b ) ] \int_a^b f(x) dx = \frac{h}{3} \left[ f(a) + 2\sum_{i=1}^{(n/2)-1} f(x_{2i}) + 4\sum_{i=1}^{n/2} f(x_{2i-1}) + f(b) \right] abf(x)dx=3h[f(a)+2i=1(n/2)1f(x2i)+4i=1n/2f(x2i1)+f(b)]

在这里插入图片描述

下面分别使用三种方法计算 f ( x ) = 4 x 3 f(x) = 4x^3 f(x)=4x3在区间 ( 0 , 2 ) (0, 2) (0,2)内的积分.

h = 0.05; x = 0:h:2;
y = 4*midpoint.^3;

% 使用矩形法计算近似积分
midpoint = (x(1:end-1)+x(2:end))./2;
s = sum(h*y)			% 得到 15.9950

% 使用梯形法计算近似积分
trapezoid = (y(1:end-1)+y(2:end))/2;
s = h*sum(trapezoid)	% 得到 15.2246

% 使用抛物线法计算数值积分
s = h/3*(y(1)+2*sum(y(3:2:end-2))+4*sum(y(2:2:end))+y(end))	% 得到 15.8240

数值积分函数:integral()

integral(),integral2(),integral3()分别对函数在xminxmax间进行一重,二重,三重积分.

它们的第一个参数都应该是一个函数句柄,下面例子演示他们的用法:

  1. 计算 ∫ 0 2 1 x 3 − 2 x − 5 \int_0^2 \frac{1}{x^3-2x-5} 02x32x51

    f = @(x) 1./(x.^3-2*x-5);
    integral(f,0,2)		% 得到 -0.4605
    
  2. 计算 ∫ 0 π ∫ π 2 π ( y sin ⁡ ( x ) + x cos ⁡ ( y ) ) d x d y \int_0^\pi \int_\pi^{2\pi} (y\sin(x) + x \cos(y)) dx dy 0ππ2π(ysin(x)+xcos(y))dxdy

    f = @(x,y) y.*sin(x)+x.*cos(y);
    integral2(f,pi,2*pi,0,pi)	% 得到 -9.8696
    
  3. 计算 ∫ − 1 1 ∫ 0 1 ∫ 0 π ( y sin ⁡ ( x ) + z cos ⁡ ( y ) ) d x d y d z \int_{-1}^1 \int_0^1 \int_0^\pi (y\sin(x) + z \cos(y)) dx dy dz 11010π(ysin(x)+zcos(y))dxdydz

    f = @(x,y,z) y.*sin(x)+z.*cos(y);
    integral3(f,0,pi,0,1,-1,1)
    

pdf版本笔记的下载地址: MATLAB07_数值计算(访问密码:3834)

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值