最小生成树笔记

  • 生成树:删去一些边,使图变成树。

    对于 n n n 个点的图,生成树有 n − 1 n-1 n1 条边。

  • 最小生成树:所有生成树中边权最小的。

  • 对于一个图,不存在最大/最小生成树的条件是并查集里面没有 n n n 个点,即总边数 < n − 1 <n-1 <n1

  • 如果一个图存在唯一最小生成树,需要满足对于所有非最小生成树中的边,对于起点和终点 u u u v v v,边 u → v u\rightarrow v uv 的边权大于 u u u v v v 在最小生成树上的最短距离的最大边权。

最小生成树算法

Prim

不会。堆优化后时间复杂度为 O ( m log ⁡ n ) O(m\log n) O(mlogn)

Kruskal
  1. 将所有边按边权升序排列。
  2. 依次考虑所有边,如果边的两端在不同连通块内,将该边加入生成树,合并连通块。
  • 用并查集维护连通块关系。

时间复杂度为 O ( m log ⁡ m ) O(m\log m) O(mlogm)

for(int i=1;i<=m&&cnt<n-1;i++)
{
    int x=e[i].from,y=e[i].to,z=e[i].w;
    int u=find(x),v=find(y);
    if(u==v) continue;
    fa[u]=v;cnt++;
    add(x,y,z);add(y,x,z);
}

练手板子题

代码如下:

#include <bits/stdc++.h>
using namespace std;

int to[500000],v[500000],father[500000],nxt[500000],cnt,head[500000],uu,vv,ans,M,N;

int find(int x)
{
	if(father[x]!=x) father[x]=find(father[x]);
	return father[x];
}

struct node
{
	int to,from,v;
}gg[500000];

bool cmp(node a,node b)
{
	return a.v<b.v;
}

int main()
{
	cin>>N>>M;
	int sum;
	for(int i=1;i<=N;i++) father[i]=i;
	for(int i=1;i<=M;i++) cin>>gg[i].from>>gg[i].to>>gg[i].v;
	sort(gg+1,gg+1+M,cmp);
	for(int i=1;i<=N;i++) father[i]=i;
	for(int i=1;i<=M&&cnt<N-1;i++)
	{
		int uu=find(gg[i].from),vv=find(gg[i].to);
		if(uu!=vv)
		{
			sum+=gg[i].v;
			father[uu]=vv;
			cnt++;
		}
	}
	if(cnt!=N-1)
		cout<<"orz";
	else
		cout<<sum;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值