python环境搭建,设置镜像源

本文详细介绍了在Windows操作系统中如何搭建Python环境,包括下载并安装Python 3.7或3.8,确保安装时勾选pip和环境变量选项。接着推荐使用PyCharm社区版作为IDE,并提供了设置国内镜像源以加速pip包安装的方法,包括临时和永久修改pip源。通过这些步骤,读者能够快速高效地构建和优化Python开发环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要讲windows环境下搭建python环境

1.下载安装python。推荐3.7或者3.8:Download Python | Python.org

2.根据提示安装,注意点:勾选安装pip,勾选添加到环境变量,可以自己选择安装目录;

3.安装IDE,推荐pycharm:推荐社区版。PyCharm:JetBrains为专业开发者提供的Python IDE

打开pycharm就可以开始使用了,pycharm的使用技巧可以慢慢摸索

设置镜像源:

pip国内的一些镜像

  阿里云 Simple Index

  中国科技大学 Simple Index

  豆瓣(douban) Simple Index

  清华大学 Simple Index

  中国科学技术大学 Simple Index

修改源方法:

临时使用:

可以在使用pip的时候在后面加上-i参数,指定pip源

eg:    pip install scrapy -i Simple Index

永久修改:

linux:

修改 ~/.pip/pip.conf (没有就创建一个), 内容如下:

[global]

index-url = https://pypi.tuna.tsinghua.edu.cn/simple

windows:

直接在user目录中创建一个pip目录,如:C:\Users\xx\pip,新建文件pip.ini,内容如下

[global]

index-url = https://pypi.tuna.tsinghua.edu.cn/simple

如windows未生效,输入以下命令

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

Anaconda是一个开源的Python发行版本,它包含了conda、Python等180多个科学包及其依赖项。它专为科学计算而设计,支持Linux、Mac、Windows系统。使用Anaconda可以方便地进行PyTorch和GPU环境搭建,以便进行深度学习等科学计算任务。 搭建PyTorch GPU环境的基本步骤如下: 1. 下载并安装Anaconda:访问Anaconda官网下载适合你的操作系统版本的Anaconda安装包,并按照指引完成安装。 2. 创建虚拟环境:打开命令行工具,使用conda命令创建一个新的虚拟环境,例如命名为`pytorch_gpu`。 ``` conda create --name pytorch_gpu python=3.8 ``` 3. 激活虚拟环境:在命令行中输入以下命令激活刚才创建的虚拟环境。 ``` conda activate pytorch_gpu ``` 4. 安装PyTorch GPU版本:使用conda命令来安装适合你的CUDA版本的PyTorch GPU版本。首先需要确认你的CUDA版本,然后选择合适的PyTorch版本进行安装。你可以在PyTorch官网找到对应版本的安装命令。例如,如果你的CUDA版本是10.2,可以使用以下命令: ``` conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` 如果你在中国大陆地区,使用默认的镜像源可能会比较慢,建议更换为国内的镜像源,例如清华大学的镜像源。 5. 设置国内镜像源:在安装PyTorch之前,可以通过配置conda的镜像源来加速下载。以清华大学的镜像源为例,你可以先创建一个配置文件`.condarc`在你的用户目录下,添加以下内容: ``` channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ ``` 这样就可以使用清华大学的镜像源来加速下载了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值