BZOJ2090/2089 [Poi2010]Monotonicity 2/Monotonicity

84 篇文章 1 订阅
8 篇文章 0 订阅

考虑dp,f[i]表示使得i在选出来的子序列里尽可能靠后的话,那么i最靠后可以作为第f[i]项

显然如果能求出每个i的f值,取max就是答案

然后我们要证明,每个f[i]只可能是由j<i的f[j]而转移过来的,即对于每个i,如果i出现在了答案中,那么i出现的位置一定是f[i]

也就是我们要说明,当j出现在答案中而j的位置不是f[j]时,f[i]不可能更大

那么我们假设i是第一个i,有j<i满足f[j]=x,j出现在答案中一个不是x的位置y(y<x),而此时f[i]能更大

首先a[j]与a[i]一定不满足位置x的大小关系,且能满足位置y的大小关系,由此可以推出位置x与位置y的符号不同,以上三条显然

而且a[j]与a[i]一定不相等,由此和上边一行可以推出位置y不是等于号,也比较显然

因为f[j]=x,且i是第一个i满足由非f的地方转移过来,所以一定存在k<j,f[k]=y

那么我们一定有a[k]与a[i]不满足位置y的符号,因为否则i可以由k转移而j待在位置y就没有意义了

假设x位置是小于或等于号,那么由以上几行y位置一定是大于号,且一定有a[k]<a[i]

因为f[j]=x,那么一定有l满足k<l<j,a[l]<a[k]<a[i]且f[l]的位置是小于号,所以f[i]一定可以由f[l]转移并且比从位置y转移更优

x的位置上是大于号时亦然

证毕

知道了这些之后,把f[i]所在位置为大于号和小号的分别用权值树状数组维护一下最大值,等于号的直接开个数组记最大值就行了

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define MAXN 500010
#define MAXM 1000010
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 1e-8
#define lb(x) x&-x
int n,m;
int a[MAXN];
char o[MAXN];
int ans;
int f[MAXN];
int c1[MAXM],c2[MAXM],c3[MAXM];
void change(int *c,int x,int y){
	for(;x<MAXM;x+=lb(x)){
		c[x]=max(c[x],y);
	}
}
int ask(int *c,int x){
	int re=0;
	for(;x;x-=lb(x)){
		re=max(re,c[x]);
	}
	return re;
}
int main(){
	int i;
	char t[2];
	scanf("%d%d",&n,&m);
	for(i=1;i<=n;i++){
		scanf("%d",&a[i]);
	}
	for(i=1;i<=m;i++){
		scanf("%s",t);
		o[i]=t[0];
	}
	for(i=m+1;i<=n;i++){
		o[i]=o[(i-1)%m+1];
	}
	for(i=1;i<=n;i++){
		f[i]=max(c3[a[i]],max(ask(c1,a[i]-1),ask(c2,MAXM-a[i])))+1;
		ans=max(ans,f[i]);
		if(o[f[i]]=='='){
			c3[a[i]]=max(c3[a[i]],f[i]);
		}
		if(o[f[i]]=='<'){
			change(c1,a[i],f[i]);
		}
		if(o[f[i]]=='>'){
			change(c2,MAXM-a[i]+1,f[i]);
		}
	}
	printf("%d\n",ans);
	return 0;
}

/*

*/


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

neither_nor

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值