考虑dp,f[i]表示使得i在选出来的子序列里尽可能靠后的话,那么i最靠后可以作为第f[i]项
显然如果能求出每个i的f值,取max就是答案
然后我们要证明,每个f[i]只可能是由j<i的f[j]而转移过来的,即对于每个i,如果i出现在了答案中,那么i出现的位置一定是f[i]
也就是我们要说明,当j出现在答案中而j的位置不是f[j]时,f[i]不可能更大
那么我们假设i是第一个i,有j<i满足f[j]=x,j出现在答案中一个不是x的位置y(y<x),而此时f[i]能更大
首先a[j]与a[i]一定不满足位置x的大小关系,且能满足位置y的大小关系,由此可以推出位置x与位置y的符号不同,以上三条显然
而且a[j]与a[i]一定不相等,由此和上边一行可以推出位置y不是等于号,也比较显然
因为f[j]=x,且i是第一个i满足由非f的地方转移过来,所以一定存在k<j,f[k]=y
那么我们一定有a[k]与a[i]不满足位置y的符号,因为否则i可以由k转移而j待在位置y就没有意义了
假设x位置是小于或等于号,那么由以上几行y位置一定是大于号,且一定有a[k]<a[i]
因为f[j]=x,那么一定有l满足k<l<j,a[l]<a[k]<a[i]且f[l]的位置是小于号,所以f[i]一定可以由f[l]转移并且比从位置y转移更优
x的位置上是大于号时亦然
证毕
知道了这些之后,把f[i]所在位置为大于号和小号的分别用权值树状数组维护一下最大值,等于号的直接开个数组记最大值就行了
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<vector>
#include<set>
using namespace std;
#define MAXN 500010
#define MAXM 1000010
#define INF 1000000000
#define MOD 1000000007
#define ll long long
#define eps 1e-8
#define lb(x) x&-x
int n,m;
int a[MAXN];
char o[MAXN];
int ans;
int f[MAXN];
int c1[MAXM],c2[MAXM],c3[MAXM];
void change(int *c,int x,int y){
for(;x<MAXM;x+=lb(x)){
c[x]=max(c[x],y);
}
}
int ask(int *c,int x){
int re=0;
for(;x;x-=lb(x)){
re=max(re,c[x]);
}
return re;
}
int main(){
int i;
char t[2];
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(i=1;i<=m;i++){
scanf("%s",t);
o[i]=t[0];
}
for(i=m+1;i<=n;i++){
o[i]=o[(i-1)%m+1];
}
for(i=1;i<=n;i++){
f[i]=max(c3[a[i]],max(ask(c1,a[i]-1),ask(c2,MAXM-a[i])))+1;
ans=max(ans,f[i]);
if(o[f[i]]=='='){
c3[a[i]]=max(c3[a[i]],f[i]);
}
if(o[f[i]]=='<'){
change(c1,a[i],f[i]);
}
if(o[f[i]]=='>'){
change(c2,MAXM-a[i]+1,f[i]);
}
}
printf("%d\n",ans);
return 0;
}
/*
*/