题意
给出N个正整数a[1..N],再给出K个关系符号(>、<或=)s[1..k]。
选出一个长度为L的子序列(不要求连续),要求这个子序列的第i项和第i+1项的的大小关系为s[(i-1)mod K+1]。
求出L的最大值。
N, K <= 500,000
分析
一开始很显然的暴力想法就是f[i,j]表示序列的第i位匹配是否能到关系序列的第j位,然后用数据结构维护一下就好了。复杂度是n^2log,显然不能过。
考虑优化。
可以设f[i]表示第i位最多能匹配到关系序列的哪一位。但是我发现f[i]不一定能直接由f[j]转移而来。然后就不会了。
但其实是可以的。也就是说f[i]由f[j]转移过来的话一定是最优的,证明比较复杂。
然后就开两棵线段树加一个桶维护一下就好了。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=500005;
int n,m,a[N],b[N],w[N*2],f[N];
struct tree{int mx1,mx0;}t[N*10];
void ins(int d,int l,int r,int x,int y,int op)
{
if (!op) t[d].mx0=max(t[d].mx0,y);
else t[d].mx1=max(t[d].mx1,y);
if (l==r) return;
int mid=(l+r)/2;
if (x<=mid) ins(d*2,l,mid,x,y,op);
else ins(d*2+1,mid+1,r,x,y,op);
}
int find(int d,int l,int r,int x,int y,int op)
{
if (x>y) return 0;
if (l==x&&r==y)
{
if (!op) return t[d].mx0;
else return t[d].mx1;
}
int mid=(l+r)/2;
return max(find(d*2,l,mid,x,min(y,mid),op),find(d*2+1,mid+1,r,max(x,mid+1),y,op));
}
int main()
{
scanf("%d%d",&n,&m);
int mx=0;
for (int i=1;i<=n;i++) scanf("%d",&a[i]),mx=max(mx,a[i]);
for (int i=1;i<=m;i++)
{
char ch[2];
scanf("%s",ch);
if (ch[0]=='>') b[i]=0;
else if (ch[0]=='<') b[i]=1;
else b[i]=2;
}
int ans=0;
for (int i=1;i<=n;i++)
{
f[i]=max(find(1,1,mx,a[i]+1,mx,0),max(find(1,1,mx,1,a[i]-1,1),w[a[i]]))+1;
int x=b[(f[i]-1)%m+1];
if (!x) ins(1,1,mx,a[i],f[i],0);
else if (x==1) ins(1,1,mx,a[i],f[i],1);
else w[a[i]]=max(w[a[i]],f[i]);
ans=max(ans,f[i]);
}
printf("%d",ans);
return 0;
}