BZOJ3917 [Baltic2014]sequence

这题好神-_-

我们考虑对序列里的每一个数a[i],求一个集合s[i],代表a[i]中必须出现的数字集合

初始的时候每个s[i]里都只有输入的那个数

我们另x[i]=a[i]/10(整除)y[i]=a[i]%10(即a[i]的个位)

然后我们枚举第一个数的个位,即y[1],y[1]确定后所有的y就都确定了,然后如果s[i]中包含了y[i],那么就可以从s[i]中删掉y[i]

我们知道数列a是连续的,所以相邻的一些x[i]是相等的,并且根据y[i]的变化情况我们可以知道哪些x是相等的,那么我们把x相等的s都合并起来,这样就得到了长度大概为n/10的新序列a',a'依旧是连续的,并且我们也知道新的s,所以就可以递归处理了,当n=1的时候就是递归出口,可以根据哪些数必须出现贪心第算最小值,这样复杂度就是O(n log n)的

实现的时候有一些细节要注意,主要是一下几点:

当n=1时,如果前面已经枚举好的位都是0,那么返回值不能是0

n=1时,可以返回零,但不能出前导零

如果在一层递归中,有一个s[i]中包含零,并且y[i]==0,那么这层递归的返回值不能为0

开long long

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<map>
#include<set>
#include<bitset>
#include<queue>
#include<stack>
using namespace std;
#define MAXN 100010
#define MAXM 10000010
#define INF 1000000000000000000ll
#define MOD 1000000007
#define eps 1e-8
#define ll long long
int n;
int memp[MAXM];
ll cal(int *a,int n,bool flag,bool flag2){
	ll i,j;
	ll re=INF;
	if(n==1){
		if(!a[1]&&!flag){
			return 1;
		}
		bool flag=0;
		re=0;
		for(i=1;i<=9;i++){
			if(a[1]&(1<<i)){
				flag=1;
				re=i;
				a[1]^=(1<<i);
				break;
			}
		}
		if(!flag&&(a[1]&1)){
			re=1;
		}
		for(i=0;i<=9;i++){
			if(a[1]&(1<<i)){
				re*=10;
				re+=i;
			}
		}
		return re;
	}
	for(i=0;i<=9;i++){
		if(i==9&&!flag2){
			break;
		}
		int now=i;
		int N=1;
		int *r=a+n;
		r[1]=0;
		bool f=0;
		for(j=1;j<=n;j++){
			r[N]|=a[j]^(a[j]&(1<<now));
			if(!now&&(a[j]&1)){
				f=1;
			}
			if(j!=n&&++now==10){
				r[++N]=0;
				now=0;
			}
		}
		ll t=cal(a+n,N,flag||i,i!=9||n>2)*10+i;
		if(!t&&f){
			t=10;
		}
		re=min(re,t);
	}
	return re;
}
int main(){
	ll i,x;
	scanf("%lld",&n);
	for(i=1;i<=n;i++){
		scanf("%lld",&x);
		memp[i]=1<<x;
	}
	printf("%lld\n",cal(memp,n,0,1));
	return 0;
}

/*

*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值