BZOJ2713 [Violet 2]愚蠢的副官&BZOJ1183 [Croatian2008]Umnozak

digit-product:各个数位的乘积

self-product:digit-product与自身的乘积

首先我们可以发现一个数的digital-product小于等于其本身,所以一个数的digit-product<=根号下self-product

在这题的数据范围下就<=1e9,而digit-product的质因数只可能有2,3,5,7,1e9内质因数只有2,3,5,7的数非常少,那么我们枚举digit-product,设为p,每次求出在l/p上取整到r/p下取整之间digit-product等于p的数即可,也就是2,3,5,7的次数与p中2,3,5,7的次数相等,这个可以数位dp搞定

#include<iostream>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<iomanip>
#include<cstdlib>
#include<cstdio>
#include<map>
#include<bitset>
#include<set>
#include<stack>
#include<vector>
#include<queue>
using namespace std;
#define MAXN 1010
#define MAXM 1010
#define ll long long
#define eps 1e-8
#define MOD 1000000007
#define INF 1000000000
ll ans;
ll f[19][10][30][19][13][11];
int p[10][4]={{0,0,0,0},{0,0,0,0},{1,0,0,0},{0,1,0,0},{2,0,0,0},{0,0,1,0},{1,1,0,0},{0,0,0,1},{3,0,0,0},{0,2,0,0}};
ll mi[20];
ll cal(int l1,int l2,int l3,int l4,ll n,ll P){
	if(n==0){
		return 0;
	}
	int i,j;
	int len;
	ll re=0;
	for(len=1;len<=18;len++){
		if(mi[len]>n){
			break;
		}
	}
	len--;
	for(i=1;i<len;i++){
		for(j=1;j<=9;j++){
			re+=f[i][j][l1][l2][l3][l4];
		}
	}
	int y=n/mi[len];
	for(i=1;i<y;i++){
		re+=f[len][i][l1][l2][l3][l4];
	}
	l1-=p[y][0];
	l2-=p[y][1];
	l3-=p[y][2];
	l4-=p[y][3];
	if(l1>=0&&l2>=0&&l3>=0&&l4>=0){
		for(i=len-1;i;i--){
			int y=n/mi[i]%10;
			if(!y){
				break;
			}
			for(j=1;j<y;j++){
				re+=f[i][j][l1][l2][l3][l4];
			}
			l1-=p[y][0];
			l2-=p[y][1];
			l3-=p[y][2];
			l4-=p[y][3];
			if(l1<0||l2<0||l3<0||l4<0){
				break;
			}
		}
	}
	ll t=1;
	for(i=len;i;i--){
		t*=n/mi[i]%10;
	}
	re+=t==P;
	return re;
}
int main(){
	int i,j,k,l;
	ll a,b,c,d;
	ll L,R;
	f[0][1][0][0][0][0]=1;
	mi[1]=1;
	for(i=2;i<=18;i++){
		mi[i]=mi[i-1]*10;
	}
	ll x,y,z;
	for(x=0;x<18;x++){
		for(i=0,a=1;a<=INF;i++,a*=2){
			for(j=0,b=1;a*b<=INF;j++,b*=3){
				for(k=0,c=1;a*b*c<=INF;k++,c*=5){
					for(l=0,d=1;a*b*c*d<=INF;l++,d*=7){
						for(y=1;y<=9&&a*b*c*d*y<=INF;y++){
							for(z=1;z<=9;z++){
								if(i+p[y][0]<30&&j+p[y][1]<19&&k+p[y][2]<13&&l+p[y][3]<11){
									f[x+1][y][i+p[y][0]][j+p[y][1]][k+p[y][2]][l+p[y][3]]+=f[x][z][i][j][k][l];
								}
							}
						}
					}
				}
			}
		}
	}
	scanf("%lld%lld",&L,&R);
	for(i=0,a=1;a<=INF;i++,a*=2){
		for(j=0,b=1;a*b<=INF;j++,b*=3){
			for(k=0,c=1;a*b*c<=INF;k++,c*=5){
				for(l=0,d=1;a*b*c*d<=INF;l++,d*=7){
					ll p=a*b*c*d;
					ans+=cal(i,j,k,l,R/p,p);
					ans-=cal(i,j,k,l,(L+p-1)/p-1,p);
				}
			}
		}
	}
	printf("%lld\n",ans);
	return 0;
}

/*
1 10

*/


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值