SPSS之聚类分析

SPSS中系统聚类分析功能在【分析】—【分类】—【系统聚类】中完成。系统聚类有两种类型,一种是对样本进行聚类,称为Q型聚类;一种是对变量进行聚类,称为R型聚类。在【系统聚类分析】—【聚类】框下选择【个案】——Q型聚类,或是【变量】——R型聚类。

如果参与聚类分析的变量存在数量级上的差异,应在SPSS中,通过【系统聚类分析】—方法(M)—【系统聚类分析:方法】—【转换值】—【标准化】选项中选择消除数量级差的方法。并指定处理是针对变量还是针对样本的。

SPSS中提供多种系统聚类方法,常用的是组间平均链接和组内平均链接。通过【系统聚类分析】—方法(M)—【系统聚类分析:方法】—【聚类方法】选项中选择。SPSS提供多种个体距离的计算方式,常用的是Euclidean距离,平方Euclidean距离,Pearson相关性。通过【系统聚类分析】—方法(M)—【系统聚类分析:方法】—【测量】—【区间】选项中选择。

分类数的确定。

        (1)系统聚类中每次合并的类与类之间的距离可以作为确定类数的一个辅助工具。首先把离得近的类合并,在并类过程中聚合系数呈增加趋势,聚合系数小,表示合并的两类的相似程度较大,两个差异很大的类合到一起,会使该系数很大。

如果以y轴为聚合系数,x轴表示分类数(n-1,n-2,…,3,2,1),画出聚合系数随分类数的变化曲线,会得到类似于因子分析中的碎石图,可以在曲线开始变得平缓的点选择合适的分类数。SPSS中通过【图形】—【旧对话框】—【散点/点状】实现。

        (2)从实用的角度出发,选择合适的分类数。  

如果确定分类数,可一开始就在SPSS中指定类数。通过【系统聚类分析】—统计量(S)—【系统聚类分析:统计】—【聚类成员】选项中选择【单一方案】—输入方案数目,或选择【方案范围】。在【系统聚类分析】—保存(A)—【系统聚类分析:保存】—【聚类成员】选项下作同样选择。此时聚类分析的结果将以变量名为clun_m(如clu2_1)的新变量存入SPSS数据编辑窗口中。

SPSS中快速聚类法(K-均值聚类法)在【分析】--【分类】--【K-平均值聚类】中完成。首先应指定聚类数目K,在【K-平均值聚类分析】—【聚类数】框中输入聚类数目,该数应小于样本数。然后SPSS确定k个类的初始类中心点。SPSS会根据样本数据的实际情况,选择k个有代表性的样本数据作为初始类中心。初始类中心也可以由用户自行指定,需要指定K组样本数据作为初始类中心点。

最优方案原则。一般我们希望得到的聚类大小大致相等,这样把每个样品都分配到离它最近的聚类中心(即均值点)就是比较正确的分配方案。

聚类的目的是使类间差异尽量大,而类内差异尽量小,K-均值聚类分析中的方差分析提供这种检验功能。SPSS中通过在【K-平均值聚类分析】— 选项(O) —【统计量】选项中勾选【ANOVA表】来完成方差分析。

SPSS中通过在【K-平均值聚类分析】— 保存(S) 菜单下,勾选【聚类成员】,则聚类分析的结果将以变量名为QCL_m(如QCL_1)的新变量存入SPSS数据编辑窗口中。


评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值