对抗样本的一些参考文章和笔记

本文概述了对抗样本的概念,探讨了Ian Goodfellow在对抗性机器学习和生成对抗网络(GAN)方面的研究。内容包括Ian的博士答辩、Udacity的演讲、与吴恩达的谈话等,强调了对抗样本的普遍性和对模型稳健性的影响。文章提到了梯度下降、反向传播和对抗训练等关键技术,并列举了多个相关资源和防御策略。
摘要由CSDN通过智能技术生成

本文记录了自己准备写一篇介绍对抗样本的科普文章是在YouTube看Ian Goodfellow的一些视频资料学习做的笔记,以及在研究对抗样本(主要)和GAN时看到的技术博客的链接。

笔记是随意记的。

资料收集

博士答辩

在Ian博士答辩时总结到’Generative models useful for missing value problems’ in 2014. 和非监督学习.

解释maximum likelihood estimation
用模型描述事件发生的概率,模型的参数决定模型对不同事件赋予的概率。MLE是选择参数使来自数据集的事件的概率最大。

解释gradient descent
想要最小化一个目标函数/损失函数,对某个点,若导数为正,则往导数的反方向,直到导数为0.

在最后’over the next five years, hopefully we’ll learn how to do well without needing so much data, and we’ll be able to leverage the unsupervised learning techniques that have somewhat fallen out of fashion bu haven’t yet fully reached their potentail.’

Udacity talk

Ian talk from 3:50-

adversarial ML.
现在的ML assume train data 和 test data 量一样, 这个假设暗含着” there’s no opportunity for someone to interfere with the operation of the model”.

现在在不干预data的情况下, 许多app已经足够好了, human-level. 目标: harder problem, 使ML在别人攻击的情况下, 也能work well.

介绍 adversarial example, 其pervasive,对不同模型都有效. robust, 现实生活中, 即使相机拍摄的照片,角度光照不同, 亦或者是不同文件格式如jpeg压缩过的图像, 仍有效.

Ian 用了许多时间训练ML system(一般都是classifer)对attacker 是harder to break的.

提出GAN, 有趣的角度, train a classifer to decide input real or fake, 然后 try to

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值