基于人工智能的咳嗽声疾病检测研究
一、引言
自严重急性呼吸综合征冠状病毒 2(SARS - CoV - 2)出现以来,全球疫情已持续两年多。截至 2022 年 6 月,全球累计确诊 COVID - 19 病例达 5.30896347 亿例,死亡病例 630.102 万例。咳嗽是 COVID - 19 的常见症状之一,咳嗽的声音和类型包含有助于疾病诊断的有用特征。
近年来,基于特征工程与人工智能(AI)的方法被用于利用咳嗽声对不同呼吸道疾病进行分类,这为通过咳嗽声检测 COVID - 19 奠定了基础。这种方法能快速便捷地预筛病毒,有助于减缓病毒在社区的传播,也能辅助医疗人员决策和实现早期干预。
常见的咳嗽声检测模型有线性回归(LR)、卷积神经网络(CNN)和支持向量机(SVM)。本研究分别训练了支持向量机(SVM)、ResNet 和传统 CNN 模型,旨在研究这些模型在不同来源数据集上的泛化能力。研究使用了来自剑桥大学的 COVID - 19 声音数据集和印度科学研究所(IISc)班加罗尔的 Coswara 项目音频数据集,并在不同数据集上对模型进行训练和测试,以分析模型性能。
二、相关工作
- 咳嗽声阶段
咳嗽声通常可分为三个阶段:- 爆发阶段:首先听到的爆发性声音,主要是类似噪声的波形。
- 中间阶段:对应气流减少和声音振幅降低。
- 发声或声门阶段:声门部分闭合振动产生规则的周期性噪声。患病患者在一次呼吸或几次呼吸间隔后,可能会出现长时间的爆发性咳嗽,即咳嗽“时期”“阵咳”等。这些阶段会反映在咳嗽
超级会员免费看
订阅专栏 解锁全文
44

被折叠的 条评论
为什么被折叠?



