大话EM算法

本文探讨了EM算法在解决高斯混合模型参数估计问题中的应用。通过引入隐含变量Z,利用Jensen不等式,将原本复杂的优化问题转化为迭代的E步(期望)和M步(最大化)。在E步中,找到似然函数的下界,M步则通过优化下界更新模型参数,直至收敛。理解EM算法的关键包括Jensen不等式取等的条件、隐含变量的作用以及其在高斯混合模型中的具体应用。
摘要由CSDN通过智能技术生成

        在进入EM算法之前,我们先来看一个高斯混合模型的问题。混合高斯模型能很好的拟合数据的分布,这是正太分布非常好的一个性质。现在有m个样本数据,认为这m个数据样本是符合正太分布的,也就是说这些数据是正太随机变量的采样点,要求出这样的正太分布,使这些采样点分布到这个正太分布的可能性最大。这里的正太分布不是单个的正太分布,而是多个正太分布组成的混合高斯模型。对于这类求概率模型参数的问题一般解法是采用对数似然估计,可以很快的求得模型参数。然而对于混合高斯模型这类特殊的问题,对数似然估计法显得的无能为力,因为对数中的混合高斯模型是多项式加和的形式,很难像一般对数似然估计方法那样直接求导。那么如何解决这个问题呢,这正是EM算法所要解决的,


        EM算法是一种解决存在隐含变量优化问题的有效方法,既然不能直接最大化log(),我们可以不断建立l的下届(E步),然后优化下届(M步),不断迭代得到最优值。下面回到求解混合高斯模型的问题,在模型中引入隐含变量Z,通常如果能够求得Z,最大似然估计的问题就很容易解决。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值