Wu is so Water

Prepare

hdoj 1085 Holding Bin-Laden Captive!(母函数)

【题目大意】:现在有1,2,5三种硬币,且每种各有n1,n2,n5个,问最小的不能拼凑出来的数是多少。


【解题思路】:变形的母函数题目。这题的特点在于可拆分出来的数不再是连续的,我们可以先对1进行处理,再对1,2进行处理,再处理1,2,5...


【代码】:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <cmath>
#include <string>
#include <cctype>
#include <map>
#include <iomanip>
                   
using namespace std;
                   
#define eps 1e-8
#define pi acos(-1.0)
#define inf 1<<30
#define linf 1LL<<60
#define pb push_back
#define lc(x) (x << 1)
#define rc(x) (x << 1 | 1)
#define lowbit(x) (x & (-x))
#define ll long long
 
int c1[10000],c2[10000];
int n1,n2,n5;
int n;

int main(){      
    while(~scanf("%d%d%d",&n1,&n2,&n5)){
        if (n1==0 && n2==0 && n5==0) break;
        n=n1+n2*2+n5*5;
        for(int i=0; i<=n; i++) {
            c1[i]=0,c2[i]=0;
        }

        for (int i=0; i<=n1; i++) c1[i]=1;          //算1的组合
        for (int j=0; j<=n1; j++)                  //Begin 算1,2的组合
            for (int k=0; k<=n2*2; k+=2) {
                    c2[j+k]+=c1[j];
            }
        
        for (int i=0; i<=n2*2+n1; i++){
            c1[i]=c2[i],c2[i]=0;
        }                                            //End

        for (int j=0; j<=n1+n2*2; j++){             //Begin 计算1,2,5的组合
            for (int k=0; k<=n5*5; k+=5){
                c2[j+k]+=c1[j];
            }
        }
        for (int i=0; i<=n5*5+n2*2+n1; i++){
            c1[i]=c2[i],c2[i]=0;
        }                                           //End 

        
        bool flag=false;
        for (int i=0; i<=n; i++){
            if (c1[i]==0) {cout << i << endl; flag=true; break;}
        }
        if (!flag) cout << n+1 << endl;       
        
    }
    return 0;
}


阅读更多
文章标签: n2 c
个人分类: 数学 母函数
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

hdoj 1085 Holding Bin-Laden Captive!(母函数)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭