Python快速检验数据分布

假设检验的前提是确定数据的分布,本文介绍Python检验数据样本是否服从一定分布。使用方法是柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test),K-S检验方法适用于探索连续型随机变量的分布,对于离散分布(二项分布和泊松分布)需要使用其他方法进行检验。

KS检验语法

K-S检验方法能够利用样本数据推断样本来自的总体是否服从某一理论分布,是一种拟合优度的检验方法,这里使用scipy.stats.kstest() 实现单样本检测, scipy.stats.ks_2samp() 实现双样本检测。下面通过两个示例进行说明。

单样本检测

首先生成测试样本数据:

from numpy.random import seed
from numpy.random import poisson

#set seed (e.g. make this example reproducible)
seed(0)

# generate dataset of 100 values that follow a Poisson distribution with mean=5
data = poisson(5, 100)

下面代码显示如何执行KS检验,检验data数据集是否符合正太分布。

from scipy.stats import kstest

# perform Kolmogorov-Smirnov test
kstest(data, 'norm')

# 输出结果
# KstestResult(statistic=0.9072498680518208, pvalue=1.0908062873170218e-103)

从输出可以看到,检验统计量为0.9072,对应的p值为1.0908e-103,既然P值小于0.05,我们拒绝原假设,有足够证据说明样本不服从正太分布。因为我们使用poisson() 函数生成数据,样本数据应该服从泊松分布。

除了正太分布,还可以检测分布,如指数分布、伽马分布、韦伯分布、T分布、F分布等。

双样本KS检验

首先我们生成两个不同分布的样本数据:

from numpy.random import seed
from numpy.random import randn
from numpy.random import lognormal

#set seed (e.g. make this example reproducible)
seed(0)

#generate two datasets
data1 = randn(100)
data2 = lognormal(3, 1, 100)

下面代码执行KS检验,判断两个样本是否来自同一分布:

from scipy.stats import ks_2samp

#perform Kolmogorov-Smirnov test
ks_2samp(data1, data2)

# 输出结果
# KstestResult(statistic=0.99, pvalue=4.417521386399011e-57)

由输出可知,检验统计量为0.99,对应的p值为4.4175e-57。由于p值小于0.05,我们拒绝原假设。我们有足够的证据表明,这两个样本数据集不是来自同一个分布。

这个结果也不应该令人惊讶,因为我们使用标准正态分布为第一个样本生成值,使用对数正态分布为第二个样本生成值。

总结

本文介绍了如何利用python进行数据分布检验。参考内容:How to Perform a Kolmogorov-Smirnov Test in Python - Statology,官网文档:scipy.stats.kstest — SciPy v1.11.2 Manual,通过官方文档可以进一步学习其他参数的,实现更多数据检验能力。

<think>好的,我现在需要回答用户的问题:“python怎么看数据分布范围”。首先,我需要理解用户的需求。他们可能想知道如何用Python来分析数据集中的各个特征的分布范围,也就是每个变量的最小值和最大值,以及可能的分布形态。用户可能对数据分析和可视化不太熟悉,所以需要给出清晰、逐步的方法,并推荐合适的工具和库。 接下来,我要考虑用户的使用场景。用户可能是一个刚开始学习数据分析的人,或者是在处理某个项目时需要快速检查数据分布。他们的数据可能是一个DataFrame,比如使用pandas库加载的数据。他们需要知道如何快速获取统计摘要,以及如何通过可视化更直观地理解数据分布。 然后,我需要确定回答的结构。首先介绍基本的数据统计方法,比如使用pandas的describe()函数,然后转向可视化方法,如直方图、箱线图、密度图和小提琴图等。同时,可能需要提到如何处理不同数据类型,比如数值型和分类型数据,以及如何通过seaborn和matplotlib库来生成这些图表。 还要考虑用户可能的深层需求。比如,他们可能不仅想知道如何看分布范围,还想了解数据是否存在异常值、偏态或者其他分布特征。因此,在回答中需要涵盖这些方面,并给出相应的代码示例,帮助用户实际操作。 需要验证提到的每种方法是否准确。比如,describe()函数确实可以提供各列的统计摘要,包括最小值、25%分位数、中位数等。直方图和箱线图也是常用的数据分布可视化工具。此外,对于分类型数据,使用value_counts()是合适的。需要确保提供的代码示例正确无误,并且有解释,让用户能够理解每行代码的作用。 可能存在的误区是用户可能混淆分布范围和分布形态。因此,在回答中需要明确说明,分布范围主要指最小值和最大值,而分布形态包括数据的集中趋势、偏度、峰度等。同时,提醒用户在分析时不仅要看范围,还要注意整体的分布情况。 还要考虑数据量的大小。如果数据量很大,某些可视化方法可能需要调整参数,比如直方图的bin数量,或者使用KDE图来平滑分布。对于小数据集,分位数计算和箱线图可能更合适。此外,处理缺失值也是数据分布分析的一部分,可能需要提到如何处理数据中的缺失值,避免影响分析结果。 最后,需要确保回答结构清晰,步骤明确,适合不同水平的用户理解。可能需要将方法分为基本统计方法和可视化方法两部分,每部分给出具体示例,并推荐常用的库和函数。同时,总结部分可以帮助用户快速回顾关键点,注意事项则提醒他们常见的问题和解决方法。</think>在Python中分析数据分布范围,可通过**统计描述**与**可视化工具**结合实现。以下是具体方法和代码示例: --- ### 一、基础统计方法 #### 1. 数值型数据分布范围 使用`pandas`快速获取关键统计量: ```python import pandas as pd # 加载数据 df = pd.read_csv('data.csv') # 获取各列统计摘要(重点关注min/max/50%) print(df.describe()) # 单独获取极值 print("最大值:", df.max()) print("最小值:", df.min()) print("范围差:", df.max() - df.min()) ``` #### 2. 分类型数据分布 ```python # 查看类别分布及频次 print(df['category_column'].value_counts()) # 计算类别占比 print(df['category_column'].value_counts(normalize=True)) ``` --- ### 二、可视化分析方法 #### 1. 直方图 + 密度曲线 ```python import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(10,6)) sns.histplot(df['numeric_column'], kde=True, bins=30) # bins控制分粗细 plt.axvline(df['numeric_column'].mean(), color='r', linestyle='--', label='均值') plt.title('数值分布直方图') plt.legend() plt.show() ``` **解读要点**: - 峰的位置反映数据集中趋势 - 拖尾方向指示偏度(右偏/左偏) - 双峰可能暗示数据混杂不同群体 #### 2. 箱线图(检测异常值) ```python plt.figure(figsize=(8,5)) sns.boxplot(x=df['numeric_column']) plt.title('箱线图 - 分布范围与异常值') plt.show() ``` **箱体含义**: - 箱底(Q1): 25%分位数 - 箱中线:中位数 - 箱顶(Q3): 75%分位数 - 上下须:通常为Q3 + 1.5IQR 和 Q1 - 1.5IQR - 须外点:潜在异常值 #### 3. 小提琴图(综合分布形态) ```python sns.violinplot(x=df['numeric_column'], inner="quartile") plt.title('小提琴图:密度与分位数') plt.show() ``` **优势**:同时显示分布形状、密度峰值和四分位范围 #### 4. 累积分布图(CDF) ```python plt.figure(figsize=(10,6)) sns.ecdfplot(data=df, x='numeric_column') plt.title('累积分布函数 (CDF)') plt.grid(True) plt.show() ``` **作用**:直观显示小于某值的样本占比 --- ### 三、高级分析方法 #### 1. 分布对比(多变量) ```python # 多数据分布对比 sns.FacetGrid(df, hue='group_column', height=5).map(sns.kdeplot, 'numeric_column').add_legend() ``` #### 2. 概率图(检验分布类型) ```python from scipy import stats stats.probplot(df['numeric_column'], dist="norm", plot=plt) plt.title('正态分布检验Q-Q图') plt.show() ``` --- ### 四、常用工具对比 | 方法 | 适用场景 | 优势 | 缺点 | |--------------|-------------------------|-----------------------|--------------------| | `describe()` | 快速数值统计 | 无需可视化,直接输出数值结果 | 无法展示分布形态细节 | | 直方图 | 初步了解数据分布 | 直观显示频次分布 | 受bins数量影响较大 | | 箱线图 | 异常值检测/多对比 | 突出异常值和四分位范围 | 隐藏多峰分布信息 | | 小提琴图 | 精细分析单变量分布 | 结合密度和箱线图优点 | 计算量较大 | --- ### 五、注意事项 1. **数据清洗优先**:处理缺失值(`df.dropna()`或`df.fillna()`)后再分析分布 2. **对数变换**:对右偏严重数据可先做`np.log1p()`转换 3. **分分析**:使用`groupby`观察不同子群体的分布差异 ```python df.groupby('group_column')['numeric_column'].describe() ``` 4. **大数据优化**:超过10万条数据时,使用`histplot(stat='density')`替代KDE --- 通过合使用上述方法,可全面掌握数据分布范围、集中趋势和异常情况,为后续特征工程提供依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值