LangChain:Agent & Tools 实战案例

在LangChain中,“Agent”是一个与各种“Tool”交互以执行任务或回答查询的AI实体。工具本质上是通过允许代理执行特定操作(如检索当前时间或访问外部数据库)来扩展代理功能。在LangChain中创建代理的基本代码包括定义工具、加载提示模板和初始化语言模型。然后使用AgentExecutor执行代理,该代理管理代理与工具之间的交互。这种设置允许动态和上下文感知响应,使AI能够以结构化的方式进行推理和采取行动。本文带你一步一步实践,让你快速理解Agent,并能进行实践满足你的需求。

概述

在 LangChain 中,代理(Agents)和工具(Tools)是两个重要的概念,它们相互配合,使得语言模型能够更灵活、更强大地处理各种任务,以下是简要介绍:
在这里插入图片描述

代理(Agents)

  • 定义:代理是 LangChain 中能够根据给定的任务或输入决定采取何种行动的组件,它可以根据一系列的规则和语言模型的输出,动态地决定下一步应该做什么,比如是否需要调用工具、调用哪个工具,以及如何根据工具的返回结果来生成最终的回答。

  • 作用

    决策与调度:代理能够根据输入和当前的上下文,决定是否需要调用工具以及调用哪些工具来完成任务,起到了决策和调度的核心作用。

    增强语言模型能力:通过与工具的结合,代理可以弥补语言模型自身在某些特定任务上的不足,如获取实时信息、进行复杂的计算等,从而增强了整个系统的能力。

    提供灵活交互:可以根据不同的用户输入和场景,灵活地调整交互策略,提供更加个性化和自适应的交互体验。

  • 示例:在一个问答系统中,代理可以根据用户的问题判断是否需要调用搜索引擎工具来获取最新的信息,若问题是 “2024 年奥运会的举办城市是哪里”,代理会调用搜索工具获取相关信息后再回答用户。

工具(Tools)

  • 定义:工具是 LangChain 中为代理提供额外功能的组件,它们可以是各种外部的 API、数据库、计算引擎等,用于执行特定的任务,如搜索信息、进行数学计算、调用知识图谱等。

  • 作用

    拓展功能边界:工具的存在使得 LangChain 能够利用外部资源和专业服务,极大地拓展了语言模型能够处理的任务范围,让语言模型可以与现实世界的各种数据和服务进行交互。

    提高准确性和效率:在处理一些需要特定领域知识或专业计算的任务时,工具可以提供更准确和高效的解决方案,避免语言模型仅凭自身能力可能出现的错误或低效。

  • 示例:常见的工具包括搜索引擎工具,如调用百度、谷歌搜索来获取网页信息;还有计算工具,用于进行复杂的数学运算;以及知识图谱工具,用于查询特定的知识实体和关系等。

实战示例

下面实例,我们分步骤进行讲解说明,最后给出完整示例,建议你也可以动手进行测试。

Import语句:这个块导入必要的库和模块:

from dotenv import load_dotenv
from langchain import hub
from langchain.agents import (
    AgentExecutor,
    create_react_agent,
)
from langchain_core.tools import Tool
from langchain_openai import ChatOpenAI
# from langchain_community.chat_models import ChatZhipuAI (智普大模型)
# Load environment variables from .env file
load_dotenv()
  • load_dotenv:这个函数将环境变量从.env文件加载到系统的环境变量中。这种方式避免将AP

### LangChain Agent 实战示例项目教程 #### 了解LangChain Agent的工作原理 LangChain Agent是一种能够执行特定任务的人工智能实体,可以被设计成独立工作或与其他代理协同作业。这些代理通过一系列预定义的行为模式来完成复杂操作,比如查询数据库、解析文档以及调用API接口等[^1]。 #### 构建简单的问答机器人 为了展示如何创建一个基于LangChain Agent应用程序实例,这里提供了一个简易版的Python代码片段用于构建一个能回答简单问题的知识型聊天机器人: ```python from langchain import LangChainAgent, KnowledgeBaseTool def create_qa_bot(): kb_tool = KnowledgeBaseTool() # 初始化知识库工具 qa_agent = LangChainAgent( tools=[kb_tool], # 添加所需使用的工具列表 llm=OpenAI(), # 使用指定的语言模型作为LLM引擎 verbose=True # 设置为True以便查看详细的运行日志 ) return qa_agent if __name__ == "__main__": bot = create_qa_bot() while True: query = input("请输入您的问题 (输入'exit'退出): ") if query.lower().strip() == 'exit': break response = bot.run(query) print(f"Bot的回答: {response}") ``` 此段代码展示了怎样利用`KnowledgeBaseTool`类从内部存储的数据集中检索信息,并借助于大型语言模型(如OpenAI API)来进行自然语言处理和生成回复。 #### 应用场景扩展——多代理协作机制下的任务分配 当面对更复杂的业务逻辑需求时,则可能涉及到多个不同类型的代理之间的交互合作。此时就需要引入像ReAct这样的框架来帮助管理各个代理间的通信流程与决策过程[^2]。例如,在上述例子基础上进一步增强功能,使其能够在必要时候自动切换至其他专门化的子代理以获取更加精准的结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值