题意
题解
对于集合 S S S,设其有序,将最大的 M M M 个数与最小的 M M M 个数 ( s 0 , s n − 1 ) , ( s 1 , s n − 2 ) , … (s_0,s_{n-1}),(s_1,s_{n-2}),\dots (s0,sn−1),(s1,sn−2),… 配对,此时校验值最大。简单证明,若取其他的数,都可以从最大的 M M M 个数与最小的 M M M 个数中取一个未配对的数将其替换,使答案更大;若配对不满足最大的数与最小的数、次大的数与次小的数···这样配对,则任取两对数字,将其按照上述规则配对,不会使结果更差。
求满足条件的最小段数,使用倍增的思想求解当前左端点对应的最远右端点。倍增时需要使
A
A
A 有序,若每次直接排序,复杂度
O
(
N
log
2
N
)
O(N\log^2N)
O(Nlog2N);若采用归并排序的思想,每次将新增的部分排序后,合并新旧两端序列,时间复杂度递推方程大致如下
T
(
N
)
=
T
(
N
/
2
)
+
N
log
N
T(N)=T(N/2)+N\log N
T(N)=T(N/2)+NlogN 根据主定理,时间复杂度降低为
O
(
N
log
N
)
O(N\log N)
O(NlogN)。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 500005;
int K, N, M, A[maxn], B[maxn], C[maxn];
ll T;
ll check(int l, int r)
{
int cnt = 0;
ll res = 0;
while (l < r && cnt < M && res <= T)
{
ll x = C[r] - C[l];
res += x * x;
++l, --r, ++cnt;
}
return res;
}
ll calc(int l, int r, int p)
{
memcpy(B + r, A + r, sizeof(int) * (p));
sort(B + r, B + r + p);
int ai = l, bi = l, ci = r;
while (ai < r + p)
{
if (bi == r || (ci < r + p && B[ci] < B[bi]))
C[ai++] = B[ci++];
else
C[ai++] = B[bi++];
}
return check(l, r + p - 1);
}
int main()
{
scanf("%d", &K);
while (K--)
{
scanf("%d%d%lld", &N, &M, &T);
for (int i = 0; i < N; ++i)
scanf("%d", A + i);
int l = 0, r = 0, res = 0;
while (l < N)
{
++res;
int p = 1;
while (p)
{
if (r + p <= N && calc(l, r, p) <= T)
{
memcpy(B + l, C + l, sizeof(int) * (r + p - l));
r += p, p <<= 1;
}
else
p >>= 1;
}
l = r;
}
printf("%d\n", res);
}
return 0;
}