AcWing 109 倍增 + 归并

题意

传送门 AcWing 109 Genius ACM

题解

对于集合 S S S,设其有序,将最大的 M M M 个数与最小的 M M M 个数 ( s 0 , s n − 1 ) , ( s 1 , s n − 2 ) , … (s_0,s_{n-1}),(s_1,s_{n-2}),\dots (s0,sn1),(s1,sn2), 配对,此时校验值最大。简单证明,若取其他的数,都可以从最大的 M M M 个数与最小的 M M M 个数中取一个未配对的数将其替换,使答案更大;若配对不满足最大的数与最小的数、次大的数与次小的数···这样配对,则任取两对数字,将其按照上述规则配对,不会使结果更差。

求满足条件的最小段数,使用倍增的思想求解当前左端点对应的最远右端点。倍增时需要使 A A A 有序,若每次直接排序,复杂度 O ( N log ⁡ 2 N ) O(N\log^2N) O(Nlog2N);若采用归并排序的思想,每次将新增的部分排序后,合并新旧两端序列,时间复杂度递推方程大致如下
T ( N ) = T ( N / 2 ) + N log ⁡ N T(N)=T(N/2)+N\log N T(N)=T(N/2)+NlogN 根据主定理,时间复杂度降低为 O ( N log ⁡ N ) O(N\log N) O(NlogN)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 500005;
int K, N, M, A[maxn], B[maxn], C[maxn];
ll T;

ll check(int l, int r)
{
    int cnt = 0;
    ll res = 0;
    while (l < r && cnt < M && res <= T)
    {
        ll x = C[r] - C[l];
        res += x * x;
        ++l, --r, ++cnt;
    }
    return res;
}

ll calc(int l, int r, int p)
{
    memcpy(B + r, A + r, sizeof(int) * (p));
    sort(B + r, B + r + p);
    int ai = l, bi = l, ci = r;
    while (ai < r + p)
    {
        if (bi == r || (ci < r + p && B[ci] < B[bi]))
            C[ai++] = B[ci++];
        else
            C[ai++] = B[bi++];
    }
    return check(l, r + p - 1);
}

int main()
{
    scanf("%d", &K);
    while (K--)
    {
        scanf("%d%d%lld", &N, &M, &T);
        for (int i = 0; i < N; ++i)
            scanf("%d", A + i);
        int l = 0, r = 0, res = 0;
        while (l < N)
        {
            ++res;
            int p = 1;
            while (p)
            {
                if (r + p <= N && calc(l, r, p) <= T)
                {
                    memcpy(B + l, C + l, sizeof(int) * (r + p - l));
                    r += p, p <<= 1;
                }
                else
                    p >>= 1;
            }
            l = r;
        }
        printf("%d\n", res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值