基于Python的发票OCR-数字识别的简单实现

目录
大体思路 1
人为预先设好一些数据矩阵之间进行比较 2
处理的准备 2
开始实践 2
环境搭建 3
数据集准备 4
预处理 5
之后我们对其进行二值化 6
寻找数字 9
预设数据 11
2 from PIL import Image 12
3 import numpy as np 12
比较 13
1 # 计算灰度值的平均值 13
开始识别 15
8 # !!! 注意这里截取的是二值化后的图片 15
13 init = -1 15
2 import Levenshtein 3 16
手写字体 20
环境搭建 20
数据集准备 21
预处理 21
35 # 取出一张图片 即一整行 26
开始识别 26
看看我写的是啥 29
1 from PIL import Image 2 30
识别结果统计 32
3 statis = {} 4 32
16 # 计算图片的感知哈希 32
数据集 35
算法上的提升 35
从数字到文字 36
源码结构 36
发票 OCR - 数字识别的简单实现
本教程旨在使用简单的操作步骤实现一个简单的发票上的数字视频。
我们不追求识别率和速度,本文转载自http://www.biyezuopin.vip/onews.asp?id=16730目的只是想让大家初步体验一下人工智能和计算机视觉 CV。
大体思路
解析图像 转换为 灰度图二值化处理
截取到需要的数据使用矩阵存储图片
人为预先设好一些数据矩阵之间进行比较
预测输出
处理的准备
图片大小 1218*788
待识别的区域是固定的,我们只识别右上角部分的数字。
使用 opencv 进行图片的找轮廓等处理, pillow 进行图片的处理。
配合其他的一些库进行更方便的处理,安装请参考下面的教程。
开始实践
从我们上面的已知部分来看,我们的计划似乎是完美的,实际上手操作后,处处都有困难 …不管如何,先做起来再说!

# %%
import numpy as np
import matplotlib.pyplot as plt
import Levenshtein

# %%
def read_idx3(filename):
    with open(filename, 'rb') as fo:
        buf = fo.read()
        
        index = 0
        header = np.frombuffer(buf, '>i', 4, index)
        
        index += header.size * header.itemsize
        data = np.frombuffer(buf, '>B', header[1] * header[2] * header[3], index).reshape(header[1], -1)
        
        return data
    
def read_idx1(filename):
    with open(filename, 'rb') as fo:
        buf = fo.read()
        
        index = 0
        header = np.frombuffer(buf, '>i', 2, index)
        
        index += header.size * header.itemsize
        data = np.frombuffer(buf, '>B', header[1], index)
        
        return data

# %%
train_labels = read_idx1("mnist/train-labels.idx1-ubyte")

train_images = read_idx3("mnist/train-images.idx3-ubyte")

print(train_labels.shape, train_images.shape)

# %%
print(train_images[0])

print(train_labels[0])

# %%
plt.subplot(121)
plt.imshow(train_images[0, :].reshape(28, -1), cmap='gray')
plt.title('train 0')

print(train_labels[0])

# %%
# 获取测试集合

test_labels = read_idx1("mnist/t10k-labels.idx1-ubyte")

test_images = read_idx3("mnist/t10k-images.idx3-ubyte")


# %%
print(test_labels[0])

plt.subplot(122)
plt.imshow(test_images[0, :].reshape(28, -1), cmap='gray')
plt.title('test 0')

# %%
print(test_images.shape)

# 使用测试集 作为预处理

from collections import defaultdict

data = defaultdict(lambda : [])

def sHash(img):
    """感知哈希

    Args:
        img ([type]): 一维 784 的数组

    Returns:
        [str]: 感知哈希
    """
    # 感知 哈希
    hash_val = ''
    avg = img.mean()
    
    for x in range(len(img)):
        if img[x] > avg:
            hash_val += '1'
        else:
            hash_val += '0'
    return hash_val

for i in range(len(test_images)):
    img = test_images[i, :]
    # 感知 哈希
    
    data[test_labels[i]].append(sHash(img))

# %%
# 使用训练集的第一张用来测试

to_test_image = train_images[0, :]

test_hash = sHash(to_test_image)

def recognize_number(to_test_image_sHash:str):
    
    result = [ 0 for i in range(10)]
    
    
    for k,v in data.items():
    # k - 数字  v - 每个数字的所有感知哈希值
    # 遍历所有的哈希并计算值
        for hash_val in v:
            leven_val = Levenshtein.ratio(to_test_image_sHash, hash_val)
            if leven_val > result[k]:
                result[k] = leven_val

    return result



# %%

result = recognize_number(test_hash)
print(max(result))

print(result.index(max(result)))

print(result)


# %%
# 使用我们自己写的图片

from PIL import Image

diy_image = Image.open('MNIST-4.jpg')


diy_arr = np.array(diy_image).flatten()

plt.subplot(122)
plt.imshow(diy_arr.reshape(28, -1), cmap='gray')
plt.title('diy 0')

diy_arr = diy_arr.flatten()
# print(sHash(diy_arr))
r = recognize_number(sHash(diy_arr))
print(max(r))

print(r.index(max(r)))

print(r)


# %%
# 测试结果准确率

statis = {}

for i in range(0, 10):
    statis[i] = {}
    
    statis[i]["correct"] = 0
    statis[i]["all"] = 0

for i in range(100):
    shash_val = sHash(train_images[i, :])
    
    r = recognize_number(shash_val)
    
    real_val = train_labels[i]
    if r.index(max(r)) == real_val:
        statis[real_val]["correct"] += 1
    
    statis[real_val]["all"] += 1



# %%
from icecream import ic



for i in range(10):
    print(i, statis[i]["correct"] / statis[i]["all"])



在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 使用JavaScript实现OCR光学字符识别以读取数字 为了使用JavaScript实现OCR来专门识别数字,可以采用Tesseract.js库。该库是一个强大的工具,支持多种编程语言环境下的文字识别操作,在浏览器环境中尤为便捷[^1]。 对于专注于数字识别的任务而言,可以通过调整配置参数使得Tesseract更倾向于识别特定类型的字符集——即只关注阿拉伯数字0到9之间的数值。这不仅有助于减少不必要的计算资源消耗,还能有效提升针对此类任务的精度与速度。 下面是一段简单的代码片段用于展示如何设置仅限于数字模式下执行OCR的过程: ```javascript import { createWorker } from 'tesseract.js'; async function recognizeDigits(imagePath) { const worker = await createWorker({ logger: (m) => console.log(m), // 可选的日志记录器 }); await worker.load(); await worker.loadLanguage('eng'); // 加载英语包作为基础模型 await worker.initialize('eng'); // 设置变量让引擎知道我们只想检测数字 await worker.setParameters({ tessedit_char_whitelist: '0123456789', // 白名单中只保留数字 }); const result = await worker.recognize(imagePath); console.log(result.data.text); // 输出最终得到的文字内容 await worker.terminate(); // 结束工作进程释放内存 } ``` 此代码首先创建了一个`worker`实例,并加载必要的语言数据;接着通过调用`setParameters()`方法指定一个字符白名单`tessedit_char_whitelist`,其中包含了所有的十进制数位符号,从而告诉Tesseract只需要寻找这些字符即可。最后利用`recognize()`函数传入待处理图片路径完成整个过程。 当涉及到实际应用时,可能还需要考虑更多因素比如图像预处理(如二值化)、错误纠正机制以及性能优化等方面的工作。此外,如果目标是从PDF文档内提取信息,则可参照另一个案例说明,它描述了怎样构建一套完整的解决方案来接收用户的PDF文件输入并从中抽取所需文本[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值