小型低速实验风洞设计(开题报告)

目录
设 计 题 目: 小型低速实验风洞设计 1
开 题 时 间: 2024年3月20日 1
1 课题研究的目的和意义 2
1.1设计目的 2
1.2设计意义 3
2 文献综述(课题研究现状及分析) 3
2.1国内发展 3
2.2 国外发展 3
3 基本内容、拟解决的主要问题 4
3.1设计内容 4
3. 附件及辅助机构的设计:如安装装置、加压系统等; 4
3.2拟解决的主要问题 4
第一部分:准备工作 4
第二部分:设计直流式小型低速实验风洞 5
第三部分:小型风洞内流场数值模拟 5
第四部分:计算机绘图 5
5. 总体方案设计 5
5.1 小型低速回流式闭式风洞 5
(3)噪声比开口直流式风洞低得多。 6
5.2 小型低速直流式闭式风洞 6
5.3 成本估算、 7
6 进度安排 8
7 主要参考文献 8

1 课题研究的目的和意义
1.1设计目的
本设计进行小型低速实验风洞设计,采用闭式小型实验风洞,风速为0~50m/s,工作端截面面积为圆形直径500mm,方形400×400mm,工作段长度为2000mm,通过这次毕业设计,熟悉小型低速实验风洞设计的基本要求,掌握小型低速实验风洞的常规设计方法,把所学的知识应用到实际的设计中去,通过合理设计使小型低速风洞完成预计的气动力实验需求。
1.2设计意义
低速风洞实验就是用试验的手段研究航空航天飞行器的空气动力性能,特别是起飞着陆阶段的空气动力性能,研究水中兵器的流体动力性能和航空航天救生器具的气动性能。研究汽车列车的空气动力性能,研究风力机械的空气动力性能,研究单体或群体建筑构筑物在风场中的受力状态及其对蜂仔的响应特性,研究桥梁的风载状态和风振规律等等。它的控制性佳可重复性高,且一些研究也指出风动实验之结果与现地风场观测的结果相近。故风洞实验室研究许多风工程问题最常用的方法,风洞实验数据亦可用来验证数值模型的有效性,找到较佳的模式参数。
2 文献综述(课题研究现状及分析)
2.1国内发展
我国的风洞建设起步较晚,在上世纪30年代。清华大学设计了我国第一个中型低速风洞,采用回流式,最大直径为3m。而后从1960年以来,中国空气动力研究与发展中心设计了国内最大规模的低速风洞群,其中包括亚洲最大的低速风洞实验段截面为8m×6m,国内试验风速最高的亚声速风洞,该风洞试验段截面为3m×4m,这些风洞在很大程度上提高了我国低速风动的研究水平和试验水平。在上世纪80年代,吉林大学傅丽敏教授尝试将航空风动或大气边界层风洞进行改造,进行汽车风动实验,他参与了北京空气动力学研究所一座中型单回流闭口低速风洞的改建,使该风洞可以完成1:5比例的汽车风动实验。在1998年,同济大学将其土木工程防灾

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值