结合sklearn的例子理解神经网络的基本概念


先看代码(sklearn的示例代码):

from sklearn.neural_network import MLPClassifier
    X = [[0., 0.], [1., 1.]]
    y = [0, 1]

    clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
                    hidden_layer_sizes=(5, 2), random_state=1)

    clf.fit(X, y)
    print 'predict\t',clf.predict([[2., 2.], [-1., -2.]])
    print 'predict\t',clf.predict_proba([[2., 2.], [1., 2.]])
    print 'clf.coefs_ contains the weight matrices that constitute the model parameters:\t',[coef.shape for coef in clf.coefs_]
    print clf
    c=0
    for i in clf.coefs_:
        c+=1
        print c,len(i),i
说明:

   MLPclassifier,MLP 多层感知器的的缩写(Multi-layer Perceptron

   fit(X,y) 与正常特征的输入输出相同


solver='lbfgs',  MLP的求解方法:L-BFGS 在小数据上表现较好,Adam 较为鲁棒,SGD在参数调整较优时会有最佳表现(分类效果与迭代次数);
         SGD标识随机梯度下降。疑问:SGD与反向传播算法的关系
alpha:L2的参数:MLP是可以支持正则化的,默认为L2,具体参数需要调整
hidden_layer_sizes=(5, 2) hidden层2层,第一层5个神经元,第二层2个神经元)
      
计算的时间复杂度(非常高。。。。):
Suppose there are n training samples, m features, k hidden layers, each containing h neurons - for simplicity, and o output neurons. The time complexity of backpropagation is O(n\cdot m \cdot h^k \cdot o \cdot i), where i is the number of iterations. Since backpropagation has a high time complexity, it is advisable to start with smaller number of hidden neurons and few hidden layers for training.
 涉及到的设置:隐藏层数量k,每层神经元数量h,迭代次数i。


整体计算流程:
输入:the input layer, consists of a set of neurons \{x_i | x_1, x_2, ..., x_m\} representing the input features 
各个层间的计算: Each neuron in the hidden layer transforms the values from the previous layer with a weighted linear summation w_1x_1 + w_2x_2 + ... + w_mx_m, followed by a non-linear activation function g(\cdot):R \rightarrow R - like the hyperbolic tan function.   (疑问: 如果a non-linear activation function 是logit function 那么每个节点就是逻辑回归?,那么整个神经网络是变为多层的逻辑回归了么?)
输出:The output layer receives the values from the last hidden layer and transforms them into output values

展开阅读全文

没有更多推荐了,返回首页