捡了西瓜丢芝麻——注意编程细节

勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。

已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。

求满足这个条件的不同直角三角形的个数。

【数据格式】
输入一个整数 n 表示直角三角形斜边的长度。勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。

已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。

求满足这个条件的不同直角三角形的个数。

【数据格式】
输入一个整数 n 表示直角三角形斜边的长度。
要求输出一个整数,表示满足条件的直角三角形个数。

例如,输入:
5
程序应该输出:
1

再例如,输入:
100
程序应该输出:
2

再例如,输入:
3
程序应该输出:
0

资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
要求输出一个整数,表示满足条件的直角三角形个数。

例如,输入:
5
程序应该输出:
1

再例如,输入:
100
程序应该输出:
2

再例如,输入:
3
程序应该输出:
0

资源约定:
n的取值范围[n,10000000)
峰值内存消耗 < 256M
CPU消耗 < 1000ms

初始思路:
for(i=1;i<n;i++){//直角长边
            for(j=1;j<=i;j++){//直角短边
                if((i+j>n)){
                    a = i*i;
                    b = j*j;
                    if(a+b==c) ++cnt;
                }
            }
        }
当时这道题乍一看,水题啊!由于最近刷的穷举题多,直接穷举,然后提交了几次之后,结果都是wa,于是乎去找bug,发现忘了等腰直角三角形的情形,于是乎改了,又没有测试就直接取交,几次铩羽而归后,才重视起来,仔细的分析了一下时间复杂度,O(n^2),然而题目输入<10^7,程序运行时间要求为1000ms,必然挂掉”

然后就利用直角三角形的三边关系去做,开平方当然会有精度问题,可是很容易的就验证了(当时还窃窃自喜没用这种方法,然而。。。),在这过程中又回顾了Java语言的一些特性:
long 型数据在初始化时应在其后加上后缀L,
float 型数据在初始化时应在其后加上后缀F,
double 型数据在初始化时应在其后加上后缀D,

还有如果:
int x = in.nextInt();
long y = x * x;
System.out.println(y);
如果输入x为10000000,则得到的y不是100000000000000,而是276447232,因为x*x先运算,然后将其值赋给y。

所以在赋值运算时,赋值号两侧数据的类型最好相同。无非必要不要去做类型转换,无论是个人强制转换还是系统的自动转换.

import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner in = new Scanner(System.in);
        int x = in.nextInt();
        long y = x * x;
        System.out.println(y);
        while(in.hasNext()){
            long n = in.nextLong();
            long aa,bb,cc = n*n,a,b,c = n;
            int cnt = 0;
            long t1 = System.currentTimeMillis();
            for(long i=1;i<n;i++){
                a = i;
                aa = i*i;
                bb = cc-aa;
                b = (int)Math.sqrt(bb);//会有精度问题
                if(b*b==bb){//验证是否有精度问题
                    cnt ++;
                }
            }
            System.out.println(cnt/2);
            long t2 = System.currentTimeMillis();
            //System.out.println("Time cost:"+(t2-t1));
        }
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值