勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。
【数据格式】
输入一个整数 n 表示直角三角形斜边的长度。勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。
【数据格式】
输入一个整数 n 表示直角三角形斜边的长度。
要求输出一个整数,表示满足条件的直角三角形个数。
例如,输入:
5
程序应该输出:
1
再例如,输入:
100
程序应该输出:
2
再例如,输入:
3
程序应该输出:
0
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
要求输出一个整数,表示满足条件的直角三角形个数。
例如,输入:
5
程序应该输出:
1
再例如,输入:
100
程序应该输出:
2
再例如,输入:
3
程序应该输出:
0
资源约定:
n的取值范围[n,10000000)
峰值内存消耗 < 256M
CPU消耗 < 1000ms
初始思路:
for(i=1;i<n;i++){//直角长边
for(j=1;j<=i;j++){//直角短边
if((i+j>n)){
a = i*i;
b = j*j;
if(a+b==c) ++cnt;
}
}
}
当时这道题乍一看,水题啊!由于最近刷的穷举题多,直接穷举,然后提交了几次之后,结果都是wa,于是乎去找bug,发现忘了等腰直角三角形的情形,于是乎改了,又没有测试就直接取交,几次铩羽而归后,才重视起来,仔细的分析了一下时间复杂度,O(n^2),然而题目输入<10^7,程序运行时间要求为1000ms,必然挂掉”
然后就利用直角三角形的三边关系去做,开平方当然会有精度问题,可是很容易的就验证了(当时还窃窃自喜没用这种方法,然而。。。),在这过程中又回顾了Java语言的一些特性:
long 型数据在初始化时应在其后加上后缀L,
float 型数据在初始化时应在其后加上后缀F,
double 型数据在初始化时应在其后加上后缀D,
还有如果:
int x = in.nextInt();
long y = x * x;
System.out.println(y);
如果输入x为10000000,则得到的y不是100000000000000,而是276447232,因为x*x先运算,然后将其值赋给y。
所以在赋值运算时,赋值号两侧数据的类型最好相同。无非必要不要去做类型转换,无论是个人强制转换还是系统的自动转换.
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner in = new Scanner(System.in);
int x = in.nextInt();
long y = x * x;
System.out.println(y);
while(in.hasNext()){
long n = in.nextLong();
long aa,bb,cc = n*n,a,b,c = n;
int cnt = 0;
long t1 = System.currentTimeMillis();
for(long i=1;i<n;i++){
a = i;
aa = i*i;
bb = cc-aa;
b = (int)Math.sqrt(bb);//会有精度问题
if(b*b==bb){//验证是否有精度问题
cnt ++;
}
}
System.out.println(cnt/2);
long t2 = System.currentTimeMillis();
//System.out.println("Time cost:"+(t2-t1));
}
}
}