空间数据高效密度聚类方法及数据流统计σ - 分区聚类详解
在数据处理与分析领域,聚类算法是一项关键技术,它能够帮助我们发现数据中的潜在模式和结构。本文将详细介绍两种聚类方法:高效密度聚类方法(Efficient Density Clustering Method)和数据流统计σ - 分区聚类方法(Statistical σ - Partition Clustering over Data Streams)。
高效密度聚类方法(EDC)
时间复杂度分析
设ƒ为P - 树的扇出,n为其表示的数据点数量。我们先给出关于P - 树的一些引理,然后推导出平均运行时间复杂度为$O(n\sqrt{n})$。
- 引理4 :P - 树的层数$k = log(ƒ) n$。
- 证明 :P - 树每一层的节点数分别为:1, ƒ, ƒ², ƒ³, … ƒᵏ。显然,叶子层k的长度为n位,即ƒᵏ = n。因此,$k = log(ƒ) n$。
- 引理5 :在最坏情况下,P - 树的最大节点数$η = ( n - 1) / (ƒ - 1)$。
- 证明 :在无压缩的情况下,节点总数$η = 1 + ƒ + ƒ² + ƒ³ + … ƒᵏ⁻¹ = (ƒᵏ - 1) / (ƒ - 1)$。根据引理3.3.1,ƒᵏ = n,可得$η = ( n - 1) / (ƒ - 1)$。
- 引理6 :压缩比为ρ(ρ < 1)的P - 树的节点总数$η = 1 + (ρᵏ * n
订阅专栏 解锁全文
926

被折叠的 条评论
为什么被折叠?



