零样本提示(zero-shot)
零样本提示是最简单也是最直观的提示方式:你只需向AI模型描述任务,无需提供任何示例。
实战案例:电影评论分类
让我们通过一个具体例子来理解零样本提示的工作原理。假设我们想用AI对电影评论进行情感分析:
任务设计框架
- 目标:将电影评论分类为正面、中性或负面
- 模型:gemini-pro
- 温度设置:0.1(保持输出的一致性)
- 输出限制:5个token
提示格式
将电影评论分类为正面、中性或负面。
评论:"她"是一项令人不安的研究,揭示了如果允许人工智能不受约束地持续进化,人类将走向何方。我希望有更多像这部杰作一样的电影。
情绪:
关键点在于,我们并没有告诉AI如何判断正面或负面评论,也没有提供任何示例。我们只是给出了分类的范围(正面、中性、负面),然后让AI自己判断这段评论属于哪一类。
模型输出
POSITIVE
单样本与少样本(One-shot & few-shot)
与零样本提示不同,单样本(One-shot)和少样本(Few-shot)提示通过提供具体示例来引导AI模型:
- 单样本提示:提供一个示例,展示期望的输出格式或结构
- 少样本提示:提供多个示例(通常3-5个),帮助模型更好地理解模式
实战案例:披萨订单的JSON解析
让我们看一个将披萨订单解析为JSON格式的实际例子:
提示格式:
将披萨订单解析为有效的JSON格式。
示例1:
输入:"我想要一个大号披萨,配料有番茄酱、罗勒和马苏里拉奶酪"
输出:{
"size": "large",
"ingredients": ["tomato sauce", "basil", "mozzarella cheese"]
}
示例2:
输入:"我想要一个大号披萨,一半是奶酪,一半是番茄酱、火腿加菠萝"
输出:{
"size": "large",
"half1": {
"ingredients": ["cheese"]
},
"half2": {
"ingredients": ["tomato sauce", "ham", "pineapple"]
}
}
现在解析:
输入:"我想要两个中号披萨,一个是蘑菇和青椒,另一个是意大利香肠和橄榄"
思维链(Chain-of-Thought, CoT)
思维链提示是一种引导AI模型生成中间推理步骤的技术,通过让AI"说出"其思考过程,来提高回答的准确性。
该提示框架可以做到不用微调模型就可以做到让模型深度思考。
CoT与今天的模型深度思考过程是非常类似的,比如deepseek的深度思考过程