(2)大模型的提示词工程实践技巧---七大提示技巧

零样本提示(zero-shot)

零样本提示是最简单也是最直观的提示方式:你只需向AI模型描述任务,无需提供任何示例。

实战案例:电影评论分类

让我们通过一个具体例子来理解零样本提示的工作原理。假设我们想用AI对电影评论进行情感分析:

任务设计框架

  • 目标:将电影评论分类为正面、中性或负面
  • 模型:gemini-pro
  • 温度设置:0.1(保持输出的一致性)
  • 输出限制:5个token

提示格式

将电影评论分类为正面、中性或负面。

评论:"她"是一项令人不安的研究,揭示了如果允许人工智能不受约束地持续进化,人类将走向何方。我希望有更多像这部杰作一样的电影。

情绪:

关键点在于,我们并没有告诉AI如何判断正面或负面评论,也没有提供任何示例。我们只是给出了分类的范围(正面、中性、负面),然后让AI自己判断这段评论属于哪一类。

模型输出

POSITIVE

单样本与少样本(One-shot & few-shot)

与零样本提示不同,单样本(One-shot)和少样本(Few-shot)提示通过提供具体示例来引导AI模型:

  • 单样本提示:提供一个示例,展示期望的输出格式或结构
  • 少样本提示:提供多个示例(通常3-5个),帮助模型更好地理解模式

实战案例:披萨订单的JSON解析

让我们看一个将披萨订单解析为JSON格式的实际例子:

提示格式:

将披萨订单解析为有效的JSON格式。

示例1:
输入:"我想要一个大号披萨,配料有番茄酱、罗勒和马苏里拉奶酪"
输出:{
  "size": "large",
  "ingredients": ["tomato sauce", "basil", "mozzarella cheese"]
}

示例2:
输入:"我想要一个大号披萨,一半是奶酪,一半是番茄酱、火腿加菠萝"
输出:{
  "size": "large",
  "half1": {
    "ingredients": ["cheese"]
  },
  "half2": {
    "ingredients": ["tomato sauce", "ham", "pineapple"]
  }
}

现在解析:
输入:"我想要两个中号披萨,一个是蘑菇和青椒,另一个是意大利香肠和橄榄"

思维链(Chain-of-Thought, CoT)

思维链提示是一种引导AI模型生成中间推理步骤的技术,通过让AI"说出"其思考过程,来提高回答的准确性。
该提示框架可以做到不用微调模型就可以做到让模型深度思考。

CoT与今天的模型深度思考过程是非常类似的,比如deepseek的深度思考过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非常大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值