第三周错题集

本文介绍了两个Python编程练习,第一个练习涉及生成等边星号三角形,根据输入的奇数N输出不同行数的星号。第二个练习是处理字符串,将输入的以减号分隔的字符串首尾两段用加号连接。这些练习展示了Python的基础语法,包括循环、字符串格式化和字符串操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练习题1:

星号三角形
读入一个整数N,N是奇数,输出由星号字符组成的等边三角形,要求:‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬

第1行1个星号,第2行3个星号,第3行5个星号,依次类推,最后一行共N的星号。‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

a = eval(input())
for i in range(1,a+1,2):
    print("{0:^{1}}".format(i * '*',a))
    # 字符串格式化内有两个中括号,要注意
    # 对0位置的操作,宽度为奇数的a,如果输入了偶数,实际上宽度是偶数,但显示是奇数

我之前的解答方法是:

a = eval(input())
for i in range(1,a+1,2):
    print(i*"*")
    # 原题对于是否居中很模糊,所以解答的方法内没有居中的命令

练习题2:

描述
获得输入的一个字符串s,以字符减号(-)分割s,将其中首尾两段用加号(+)组合后输出。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬

a = input()
b = a.split("-")
print("{0}+{1}".format(b[0],b[-1]))

output:

1-2-3-4-5-6-7-8-9-0
1+0

基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现遥感图像滑坡识别源码+数据+训练好的模型基于深度学习CNN网络+pytorch框架实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值