高光谱图像文献阅读

本文提出DMSAN模型解决高光谱图像分类精度下降问题,通过PCA降维、Dense Connectivity增强特征重用,以及多尺度Block与Attention Block结合提升特征学习,实现在多个数据集上的优秀分类效果。
摘要由CSDN通过智能技术生成


一、高光谱图像背景介绍

高光谱图像(Hyperspectral Image,HSI)包含许多个狭窄的光谱波段,即HSI的光谱维,蕴含着丰富的光谱信息,可用于区分目标区域的地物信息。凭借其特有的光谱信息,HSI广泛应用于农业、分类、环境监测等方面。
在这里插入图片描述
如上图所示,成像光谱仪对目标区域进行连续波段的拍摄,一个波长对应一个光谱反射率,若干个反射率值构成一条连续的光谱曲线用于反映目标地物的光谱特征。如上图右图中不同光谱曲线对应不同的地物(土地、水、植被)。

二、文章摘要

2.1 文章提出的问题

基于CNN的高光谱图像分类方法表现出了良好的性能。然而随着网络加深,会发生分类精度下降的现象;从固定尺度的卷积中学习到的特征通常不够充分,不利于模型学习特征,对特征信息的利用不足,从而也会降低模型最后的分类精度。

2.2 文章提出方法的大致流程

文中提出了一种DMSAN模型。首先对原始HSI用PAC降维,然后采用由不同大小的空间-光谱卷积模块并行组成的多尺度block来提取光谱-空间特征;此外,引入Dense连接进一步融合网络不同深度中提取到的特征,从而增强特征重用和传输;最后,提出的channel-spectral-spatial attention block,自发地对融合特征进行重新设置权参。

三、DMSAN模型

3.1 PCA降维

通过PCA方法对原始高光谱图像进行降维,然后从降维后的数据中以目标像元及其相邻像元组成的三维cube作为一个patch作为后面Dense网络的输入。文中对PCA提取的主成分分量数设置为30。

3.2 Dense Connectivity

文章采用DenseNet中的密集连接作为网络连接方式,密集连接示意图如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值